
Implementing Microservices
on AWS

August 2019

Notices

Customers are responsible for making their own independent assessment of

the information in this document. This document: (a) is for informational

purposes only, (b) represents current AWS product offerings and practices,

which are subject to change without notice, and (c) does not create any

commitments or assurances from AWS and its affiliates, suppliers or licensors.

AWS products or services are provided “as is” without warranties,

representations, or conditions of any kind, whether express or implied. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any

agreement between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Abstract .. 4

Introduction .. 1

Simple Microservices Architecture on AWS .. 1

User Interface ... 2

Microservices .. 3

Data Store ... 5

Reducing Operational Complexity ... 6

API Implementation .. 6

Serverless Microservices ... 7

Deploying Lambda-Based Applications ... 9

Distributed Systems Components ... 10

Service Discovery ... 10

Distributed Data Management ... 12

Asynchronous Communication and Lightweight Messaging 14

Distributed Monitoring... 19

Chattiness ... 25

Auditing ... 25

Conclusion.. 28

Contributors .. 29

Document Revisions .. 29

Abstract

Microservices are an architectural and organizational approach to software

development to speed up deployment cycles, foster innovation and ownership,

improve maintainability and scalability of software applications, and scale

organizations delivering software and services by using an agile approach that

helps teams to work independently from each other. Using a microservices

approach, software is composed of small services that communicate over well-

defined APIs that can be deployed independently. These services are owned by

small autonomous teams. This agile approach is key to successfully scale your

organization.

There are three common patterns that we observe when our customers build

microservices: API driven, event driven, and data streaming. In this

whitepaper, we introduce all three approaches and summarize the common

characteristics of microservices, discuss the main challenges of building

microservices, and describe how product teams can leverage Amazon Web

Services (AWS) to overcome these challenges.

Amazon Web Services – Implementing Microservices on AWS

Page 1

Introduction

Microservices architectures are not a completely new approach to software

engineering, but rather a combination of various successful and proven

concepts such as:

• Agile software development

• Service-oriented architectures

• API-first design

• Continuous Integration/Continuous Delivery (CI/CD)

In many cases, design patterns of the Twelve-Factor App are leveraged for

microservices.1

We first describe different aspects of a highly scalable, fault-tolerant

microservices architecture (user interface, microservices implementation,

and data store) and how to build it on AWS leveraging container

technologies. We then recommend the AWS services for implementing a

typical serverless microservices architecture in order to reduce operational

complexity.

Serverless is defined as an operational model by the following tenets:

• No infrastructure to provision or manage

• Automatically scaling by unit of consumption

• “Pay for value” billing model

• Built-in availability and fault tolerance

Finally, we look at the overall system and discuss the cross-service aspects

of a microservices architecture, such as distributed monitoring and auditing,

data consistency, and asynchronous communication.

Simple Microservices Architecture on

AWS

Typical monolithic applications are built using different layers—a user

interface (UI) layer, a business layer, and a persistence layer. A central idea

of a microservices architecture is to split functionalities into cohesive

“verticals”—not by technological layers, but by implementing a specific

https://12factor.net/

Amazon Web Services – Implementing Microservices on AWS

Page 2

domain. Figure 1 depicts a reference architecture for a typical microservices

application on AWS.

Figure 1: Typical microservices application on AWS

User Interface

Modern web applications often use JavaScript frameworks to implement a

single-page application that communicates with a Representational State

Transfer (REST) or RESTful API. Static web content can be served using

Amazon Simple Storage Service (Amazon S32) and Amazon CloudFront3.

Since clients of a microservice are served from the closest edge location and

get responses either from a cache or a proxy server with optimized

connections to the origin, latencies can be significantly reduced. However,

microservices running close to each other don’t benefit from a CDN. In some

cases, this approach might actually add additional latency. A best practice is

to implement other caching mechanisms to reduce chattiness and minimize

latencies.

https://aws.amazon.com/s3/
https://aws.amazon.com/cloudfront/

Amazon Web Services – Implementing Microservices on AWS

Page 3

Microservices

We often say that APIs are the front door of microservices. By that, we mean

that APIs serve as the entry point for applications logic behind a set of

programmatic interfaces, typically a RESTful web services API.4 This API

accepts and processes calls from clients and might implement functionality

such as traffic management, request filtering, routing, caching,

authentication, and authorization.

Microservices Implementations

AWS has integrated building blocks that support the development of

microservices. Two popular approaches are using AWS Lambda5 and

Docker containers with AWS Fargate6.

With AWS Lambda, you simply upload your code and let Lambda take care

of everything required to run and scale the execution to meet your actual

demand curve with high availability. This means, there is no administration

of infrastructure needed. Lambda supports several programming languages

and can be triggered from other AWS services or be called directly from any

web or mobile application. One of the biggest advantages of AWS Lambda

is that you can move quickly: you can focus on your business logic because

security and scaling are managed by AWS. Lambda’s opinionated approach

drives the scalable platform.

A common approach to reduce operational efforts for deployment is

container-based deployment. Container technologies like Docker7 have

increased in popularity in the last few years due to benefits like portability,

productivity, and efficiency. The learning curve with containers can be steep

and you have to think about security fixes for your Docker images and

monitoring. Amazon Elastic Container Service (Amazon ECS8) and Amazon

Elastic Kubernetes Service (Amazon EKS9) eliminate the need to install,

operate, and scale your own cluster management infrastructure. With simple

API calls, you can launch and stop Docker-enabled applications, query the

complete state of your cluster, and access many familiar features like

security groups, Load Balancing, Amazon Elastic Block Store (Amazon

EBS10) volumes, and AWS Identity and Access Management (IAM)11 roles.

AWS Fargate is a container management service that allows you to run

serverless containers so you don’t have worry about provisioning,

configuring, and scaling clusters of virtual machines to run containers. With

Fargate, you no longer have to worry about provisioning enough compute

resources for your container applications. Fargate can launch tens of

https://aws.amazon.com/lambda/
https://aws.amazon.com/fargate/
https://www.docker.com/
https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/iam/

Amazon Web Services – Implementing Microservices on AWS

Page 4

thousands of containers and easily scale to run your most mission-critical

applications.

Amazon ECS supports container placement strategies and constraints to

customize how Amazon ECS places and terminates tasks. A task placement

constraint is a rule that is considered during task placement. You can

associate attributes, essentially key-value pairs, to your container instances

and then use a constraint to place tasks based on these attributes. For

example, you can use constraints to place certain microservices based on

instance type or instance capability, such as GPU-powered instances.

Amazon EKS runs up-to-date versions of the open-source Kubernetes

software, so you can use all the existing plugins and tooling from the

Kubernetes community. Applications running on Amazon EKS are fully

compatible with applications running on any standard Kubernetes

environment, whether running in on-premises data centers or public clouds.

Amazon EKS integrates IAM with Kubernetes, enabling you to register IAM

entities with the native authentication system in Kubernetes. There is no

need to manually set up credentials for authenticating with the Kubernetes

masters. The IAM integration allows you to use IAM to directly authenticate

with the master itself as provide fine granular access to the public endpoint

of your Kubernetes masters.

Docker images used in Amazon ECS and Amazon EKS can be stored in

Amazon Elastic Container Registry (Amazon ECR.)12 Amazon ECR

eliminates the need to operate and scale the infrastructure required to power

your container registry.

Continuous integration and continuous delivery (CI/CD) is a best practice

and a vital part of a DevOps initiative that enables rapid software changes

while maintaining system stability and security. However, this is out of the

scope of this whitepaper, more information can be found in the “Practicing

Continuous Integration and Continuous Delivery on AWS” whitepaper13.

Private Links

AWS PrivateLink14 is a highly available, scalable technology that enables

you to privately connect your VPC to supported AWS services, services

hosted by other AWS accounts (VPC endpoint services), and supported

AWS Marketplace partner services. You do not require an internet gateway,

NAT device, public IP address, AWS Direct Connect connection, or VPN

connection to communicate with the service. Traffic between your VPC and

the service does not leave the Amazon network.

https://aws.amazon.com/ecr/
https://aws.amazon.com/privatelink/
https://aws.amazon.com/directconnect/

Amazon Web Services – Implementing Microservices on AWS

Page 5

Private links are a great way to increase the isolation of microservices

architectures, e.g., it is possible to create hundreds of VPCs, each hosting

and providing a single microservice. Companies can now create services

and offer them for sale to other AWS customers, for access via a private

connection. They create a service that accepts TCP traffic, host it behind a

Network Load Balancer, and then make the service available, either directly

or in AWS Marketplace. They will be notified of new subscription requests

and can choose to accept or reject each one. While the power of AWS

PrivateLink has merits in any number of scenarios, it’s of particular interest

to SaaS organizations. Through AWS PrivateLink, SaaS providers see new

and creative opportunities to use this networking construct to enhance and

expand the architectural and business models of their solutions.

Data Store

The data store is used to persist data needed by the microservices. Popular

stores for session data are in-memory caches such as Memcached or Redis.

AWS offers both technologies as part of the managed Amazon

ElastiCache15 service.

Putting a cache between application servers and a database is a common

mechanism for reducing the read load on the database, which, in turn, may

allow resources to be used to support more writes. Caches also can improve

latency.

Relational databases are still very popular to store structured data and

business objects. AWS offers six database engines (Microsoft SQL Server,

Oracle, MySQL, MariaDB, PostgreSQL, and Amazon Aurora16) as managed

services via Amazon Relational Database Service (Amazon RDS17).

Relational databases, however, are not designed for endless scale, which

can make it difficult and time-intensive to apply techniques to support a high

number of queries.

NoSQL databases have been designed to favor scalability, performance,

and availability over the consistency of relational databases. One important

element of NoSQL databases is that they typically don’t enforce a strict

schema. Data is distributed over partitions that can be scaled horizontally

and is retrieved using partition keys.

Because individual microservices are designed to do one thing well, they

typically have a simplified data model that might be well suited to NoSQL

persistence. It is important to understand that NoSQL-databases have

different access patterns than relational databases. For example, it is not

https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/rds/

Amazon Web Services – Implementing Microservices on AWS

Page 6

possible to join tables. If this is necessary, the logic has to be implemented

in the application. You can use Amazon DynamoDB18 to create a database

table that can store and retrieve any amount of data and serve any level of

request traffic. DynamoDB delivers single-digit millisecond performance,

however, there are certain use cases that require response times in

microseconds. DynamoDB Accelerator (DAX)19 provides caching capabilities

for accessing data.

DynamoDB also offers an automatic scaling feature to dynamically adjust

throughput capacity in response to actual traffic. However, there are cases

where capacity planning is difficult or not possible because of large activity

spikes of short duration in your application. For such situations, DynamoDB

provides an on-demand option, which offers simple pay-per-request pricing.

DynamoDB on-demand is capable of serving thousands of requests per

second instantly without capacity planning.

Reducing Operational Complexity

The architecture we have described is already using managed services, but

we still have to manage Amazon Elastic Compute Cloud (Amazon EC220)

instances. We can further reduce the operational efforts needed to run,

maintain, and monitor microservices by using a fully serverless architecture.

API Implementation

Architecting, deploying, monitoring, continuously improving, and maintaining

an API can be a time-consuming task. Sometimes different versions of APIs

need to be run to assure backward compatibility for all clients. The different

stages of the development cycle (i.e., development, testing, and production)

further multiply operational efforts.

Authorization is a critical feature for all APIs, but it is usually complex to build

and involves repetitive work. When an API is published and becomes

successful, the next challenge is to manage, monitor, and monetize the

ecosystem of third-party developers utilizing the APIs.

Other important features and challenges include throttling requests to protect

the backend services, caching API responses, handling request and

response transformation, and generating API definitions and documentation

with tools such as Swagger.21

Amazon API Gateway22 addresses those challenges and reduces the

operational complexity of creating and maintaining RESTful APIs.

https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/dax/
https://aws.amazon.com/ec2/
https://aws.amazon.com/api-gateway/

Amazon Web Services – Implementing Microservices on AWS

Page 7

API Gateway allows you to create your APIs programmatically by importing

Swagger definitions, using either the AWS API or the AWS Management

Console. API Gateway serves as a front door to any web application running

on Amazon EC2, Amazon ECS, AWS Lambda, or in any on-premises

environment. Basically, API Gateway allows you to run APIs without having

to manage servers.

Figure 2 illustrates how API Gateway handles API calls and interacts with

other components. Requests from mobile devices, websites, or other

backend services are routed to the closest CloudFront Point of Presence

(PoP) to minimize latency and provide optimum user experience.

Figure 2: API Gateway call flow

Serverless Microservices

“No server is easier to manage than no server”.23 Getting rid of servers is a

great way to eliminate operational complexity.

Amazon Web Services – Implementing Microservices on AWS

Page 8

Figure 3: Serverless microservice using AWS Lambda

Lambda is tightly integrated with API Gateway. The ability to make

synchronous calls from API Gateway to Lambda enables the creation of fully

serverless applications and is described in detail in our documentation.24

Figure 3 shows the architecture of a serverless microservice with AWS

Lambda where the complete service is built out of managed services, which

eliminates the architectural burden to design for scale and high availability

and eliminates the operational efforts of running and monitoring the

microservice’s underlying infrastructure.

Amazon Web Services – Implementing Microservices on AWS

Page 9

Figure 4 shows a similar implementation that is also based on serverless

services. In this architecture, Docker containers are used with AWS Fargate,

so it’s not necessary to care about the underlying infrastructure. In addition

to Amazon DynamoDB, Amazon Aurora Serverless25 is used, which is an

on-demand, auto-scaling configuration for Amazon Aurora

(MySQL-compatible edition), where the database will automatically start up,

shut down, and scale capacity up or down based on your application's

needs.

Figure 4: Serverless microservice using AWS Fargate

Deploying Lambda-Based Applications

You can use AWS CloudFormation26 to define, deploy, and configure

serverless applications.

The AWS Serverless Application Model (AWS SAM) is a convenient way to

define serverless applications.27 AWS SAM is natively supported by

CloudFormation and defines a simplified syntax for expressing serverless

resources. In order to deploy your application, simply specify the resources

you need as part of your application, along with their associated permissions

policies in a CloudFormation template, package your deployment artifacts,

and deploy the template. Based on AWS SAM, SAM Local is an AWS CLI

tool that provides an environment for you to develop, test, and analyze your

serverless applications locally before uploading them to the Lambda runtime.

You can use SAM Local to create a local testing environment that simulates

the AWS runtime environment.

https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/cloudformation/
https://github.com/awslabs/serverless-application-model

Amazon Web Services – Implementing Microservices on AWS

Page 10

Distributed Systems Components

After looking at how AWS can solve challenges related to individual

microservices, we now want to focus on cross-service challenges, such as

service discovery, data consistency, asynchronous communication, and

distributed monitoring and auditing.

Service Discovery

One of the primary challenges with microservices architectures is allowing

services to discover and interact with each other. The distributed

characteristics of microservices architectures not only make it harder for

services to communicate, but also presents other challenges, such as

checking the health of those systems and announcing when new

applications become available. You also must decide how and where to

store meta-store information, such as configuration data, that can be used

by applications. In this section, we explore several techniques for performing

service discovery on AWS for microservices-based architectures.

DNS-Based Service Discovery

Amazon ECS now includes integrated service discovery that makes it easy

for your containerized services to discover and connect with each other.

Previously, to ensure that services were able to discover and connect with

each other, you had to configure and run your own service discovery system

based on Amazon Route 5328, AWS Lambda, and ECS Event Stream, or

connect every service to a load balancer.

Amazon ECS creates and manages a registry of service names using the

Route 53 Auto Naming API. Names are automatically mapped to a set of

DNS records so that you can refer to a service by name in your code and

write DNS queries to have the name resolve to the service’s endpoint at

runtime. You can specify health check conditions in a service's task

definition and Amazon ECS ensures that only healthy service endpoints are

returned by a service lookup.

In addition, you can also leverage unified service discovery for services

managed by Kubernetes. To enable this integration, AWS contributed to the

External DNS project29, a Kubernetes incubator project.

Another option is to leverage the capabilities of AWS Cloud Map30. AWS

Cloud Map extends the capabilities of the Auto Naming APIs by providing a

service registry for resources, such as IPs, URLs, and ARNs, and offering an

https://aws.amazon.com/route53/
https://aws.amazon.com/cloud-map/

Amazon Web Services – Implementing Microservices on AWS

Page 11

API-based service discovery mechanism with a faster change propagation

and the ability to use attributes to narrow down the set of discovered

resources. Existing Route 53 Auto Naming resources are upgraded

automatically to AWS Cloud Map.

Third-party software

A different approach to implementing service discovery is using third-party

software like HashiCorp Consul,31 etcd,32 or Netflix Eureka.33 All three

examples are distributed, reliable key-value stores. For HashiCorp Consul,

there is an AWS Quick Start34 that sets up a flexible, scalable AWS Cloud

environment and launches HashiCorp Consul automatically into a

configuration of your choice.

Service Meshes

In an advanced microservices architecture, the actual application can be

composed of hundreds or even thousands of services. Often the most

complex part of the application is not the actual services themselves, but the

communication between those services. Service meshes are an additional

layer for handling inter-service communication, which is responsible for

monitoring and controlling traffic in microservice architectures. This allows

tasks, like service discovery, to be completely handled by this layer.

Typically, a service mesh is split into a data plane and a control plane. The

data plane consists of a set of intelligent proxies that are deployed with the

application code as a special sidecar proxy that intercepts all network

communication between microservices. The control plane is responsible for

communicating with the proxies.

Service meshes are transparent, which means that application developers

don’t have to be aware of this additional layer and don’t have to make

changes to existing application code. AWS App Mesh35 is a service mesh

that provides application-level networking to make it easy for your services

to communicate with each other across multiple types of compute

infrastructure. App Mesh standardizes how your services communicate,

giving you end-to-end visibility and ensuring high availability for your

applications.

You can use AWS App Mesh with existing or new microservices running on

AWS Fargate, Amazon ECS, Amazon EKS, and self-managed Kubernetes

on AWS. App Mesh can monitor and control communications for

microservices running across clusters, orchestration systems, or VPCs as a

single application without any code changes.

https://www.consul.io/
https://github.com/coreos/etcd
https://github.com/Netflix/eureka
https://aws.amazon.com/quickstart/architecture/consul/
https://aws.amazon.com/app-mesh/

Amazon Web Services – Implementing Microservices on AWS

Page 12

Distributed Data Management

Monolithic applications are typically backed by a large relational database,

which defines a single data model common to all application components. In

a microservices approach, such a central database would prevent the goal

of building decentralized and independent components. Each microservice

component should have its own data persistence layer.

Distributed data management, however, raises new challenges. As a

consequence of the CAP Theorem,36 distributed microservices architectures

inherently trade off consistency for performance and need to embrace

eventual consistency.

In a distributed system, business transactions can span multiple

microservices. Because they cannot leverage a single ACID37 transaction,

you can end up with partial executions. In this case, we would need some

control logic to redo the already processed transactions. For this purpose,

the distributed Saga pattern is commonly used. In the case of a failed

business transaction, Saga orchestrates a series of compensating

transactions that undo the changes that were made by the preceding

transactions. AWS Step Functions38 make it easy to implement a Saga

execution coordinator as shown in the next figure.

Figure 5: Saga execution coordinator

Building a centralized store of critical reference data that is curated by

master data management tools and procedures provides a means for

microservices to synchronize their critical data and possibly roll back state.39

Using Lambda with scheduled Amazon CloudWatch Events you can build a

simple cleanup and deduplication mechanism.40

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/ACID_(computer_science)
https://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/
https://aws.amazon.com/step-functions/

Amazon Web Services – Implementing Microservices on AWS

Page 13

It’s very common for state changes to affect more than a single

microservice. In such cases, event sourcing has proven to be a useful

pattern.41 The core idea behind event sourcing is to represent and persist

every application change as an event record. Instead of persisting

application state, data is stored as a stream of events. Database transaction

logging and version control systems are two well-known examples for event

sourcing. Event sourcing has a couple of benefits: state can be determined

and reconstructed for any point in time. It naturally produces a persistent

audit trail and also facilitates debugging.

In the context of microservices architectures, event sourcing enables

decoupling different parts of an application by using a publish/subscribe

pattern, and it feeds the same event data into different data models for

separate microservices. Event sourcing is frequently used in conjunction

with the CQRS (Command Query Responsibility Segregation) pattern to

decouple read from write workloads and optimize both for performance,

scalability, and security.42 In traditional data management systems,

commands and queries are run against the same data repository.

Figure 6 shows how the event sourcing pattern can be implemented on

AWS. Amazon Kinesis Data Streams43 serves as the main component of the

central event store, which captures application changes as events and

persists them on Amazon S3.

Figure 6 depicts three different microservices composed of Amazon API

Gateway, AWS Lambda, and Amazon DynamoDB. The blue arrows indicate

the flow of the events: when microservice 1 experiences an event state

change, it publishes an event by writing a message into Kinesis Data

Streams. All microservices run their own Kinesis Data Streams application in

AWS Lambda which reads a copy of the message, filters it based on

relevancy for the microservice, and possibly forwards it for further

processing.

https://aws.amazon.com/kinesis/data-streams/

Amazon Web Services – Implementing Microservices on AWS

Page 14

Figure 6: Event sourcing pattern on AWS

Amazon S3 durably stores all events across all microservices and is the

single source of truth when it comes to debugging, recovering application

state, or auditing application changes.

Asynchronous Communication and

Lightweight Messaging

Communication in traditional, monolithic applications is straightforward—one

part of the application uses method calls or an internal event distribution

mechanism to communicate with the other parts. If the same application is

implemented using decoupled microservices, the communication between

different parts of the application must be implemented using network

communication.

REST-based Communication

The HTTP/S protocol is the most popular way to implement synchronous

communication between microservices. In most cases, RESTful APIs use

HTTP as a transport layer. The REST architectural style relies on stateless

communication, uniform interfaces, and standard methods.

With API Gateway you can create an API that acts as a “front door” for

applications to access data, business logic, or functionality from your

backend services, such as workloads running on Amazon EC2 and Amazon

ECS, code running on Lambda, or any web application. An API object

defined with the API Gateway service is a group of resources and methods.

Amazon Web Services – Implementing Microservices on AWS

Page 15

A resource is a typed object within the domain of an API and may have

associated a data model or relationships to other resources. Each resource

can be configured to respond to one or more methods, that is, standard

HTTP verbs such as GET, POST, or PUT. REST APIs can be deployed to

different stages, versioned as well as cloned to new versions.

API Gateway handles all the tasks involved in accepting and processing up

to hundreds of thousands of concurrent API calls, including traffic

management, authorization and access control, monitoring, and API version

management.

Asynchronous Messaging and Event Passing

An additional pattern to implement communication between microservices is

message passing. Services communicate by exchanging messages via a

queue. One major benefit of this communication style is that it’s not

necessary to have a service discovery and services are loosely couple.

Synchronous systems are tightly coupled which means a problem in a

synchronous downstream dependency has immediate impact on the

upstream callers. Retries from upstream callers can quickly fan-out and

amplify problems.

Depending on specific requirements, like protocols, AWS offers different

services which help to implement this pattern. One possible implementation

uses a combination of Amazon Simple Queue Service (Amazon SQS44) and

Amazon Simple Notification Service (Amazon SNS45).

Both services work closely together: Amazon SNS allows applications to

send messages to multiple subscribers through a push mechanism. By using

Amazon SNS and Amazon SQS together, one message can be delivered to

multiple consumers. Figure 7 demonstrates the integration of Amazon SNS

and Amazon SQS.

https://aws.amazon.com/sqs/
https://aws.amazon.com/sns/

Amazon Web Services – Implementing Microservices on AWS

Page 16

Figure 7: Message bus pattern on AWS

When you subscribe an SQS queue to an SNS topic, you can publish a

message to the topic and Amazon SNS sends a message to the subscribed

SQS queue. The message contains subject and message published to the

topic along with metadata information in JSON format.

A different implementation strategy is based on Amazon MQ46, which can be

used if existing software is using open standard APIs and protocols for

messaging, including JMS, NMS, AMQP, STOMP, MQTT, and WebSocket.

Amazon SQS exposes a custom API which means, if you have an existing

application that you want to migrate from e.g. an on-premises environment

to AWS, code changes are necessary. With Amazon MQ this is not

necessary in many cases.

Amazon MQ manages the administration and maintenance of ActiveMQ, a

popular open-source message broker. The underlying infrastructure is

automatically provisioned for high availability and message durability to

support the reliability of your applications.

Orchestration and State Management

The distributed character of microservices makes it challenging to

orchestrate workflows when multiple microservices are involved. Developers

might be tempted to add orchestration code into their services directly. This

should be avoided as it introduces tighter coupling and makes it harder to

quickly replace individual services.

https://aws.amazon.com/amazon-mq/

Amazon Web Services – Implementing Microservices on AWS

Page 17

You can use Step Functions to build applications from individual

components that each perform a discrete function. Step Functions provides

a state machine that hides the complexities of service orchestration, such as

error handling and serialization/parallelization. This lets you scale and

change applications quickly while avoiding additional coordination code

inside services.

Step Functions is a reliable way to coordinate components and step through

the functions of your application. Step Functions provides a graphical

console to arrange and visualize the components of your application as a

series of steps. This makes it simple to build and run distributed services.

Step Functions automatically triggers and tracks each step and retries when

there are errors, so your application executes in order and as expected. Step

Functions logs the state of each step so when something goes wrong, you

can diagnose and debug problems quickly. You can change and add steps

without even writing code to evolve your application and innovate faster.

Step Functions is part of the AWS serverless platform and supports

orchestration of Lambda functions as well as applications based on compute

resources, such as Amazon EC2 and Amazon ECS, and additional services

like Amazon SageMaker47 and AWS Glue48. Figure 8 illustrates how

invocations of Lambda functions are pushed directly from Step Functions to

Lambda, whereas workers on Amazon EC2 or Amazon ECS continuously

poll for invocations.

Step Functions manages the operations and underlying infrastructure for you

to help ensure that your application is available at any scale.

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/glue/

Amazon Web Services – Implementing Microservices on AWS

Page 18

Figure 8: Orchestration with AWS Step Functions

To build workflows, Step Functions uses the Amazon States Language.49

Workflows can contain sequential or parallel steps as well as branching

steps.

Figure 9 shows an example workflow for a microservices architecture

combining sequential and parallel steps. Invoking such a workflow can be

done either through the Step Functions API or with API Gateway.

Amazon Web Services – Implementing Microservices on AWS

Page 19

Figure 9: An example of a microservices workflow invoked by AWS Step Functions

Distributed Monitoring

A microservices architecture consists of many different distributed parts that

have to be monitored.

You can use Amazon CloudWatch50 to collect and track metrics, centralize

and monitor log files, set alarms, and automatically react to changes in your

AWS environment. CloudWatch can monitor AWS resources such as EC2

instances, DynamoDB tables, and RDS DB instances, as well as custom

metrics generated by your applications and services, and any log files your

applications generate.

https://aws.amazon.com/cloudwatch/

Amazon Web Services – Implementing Microservices on AWS

Page 20

Monitoring

You can use CloudWatch to gain system-wide visibility into resource

utilization, application performance, and operational health. CloudWatch

provides a reliable, scalable, and flexible monitoring solution that you can

start using within minutes. You no longer need to set up, manage, and scale

your own monitoring systems and infrastructure. In a microservices

architecture, the capability of monitoring custom metrics using CloudWatch

is an additional benefit because developers can decide which metrics should

be collected for each service. In addition to that, dynamic scaling can be

implemented based on custom metrics.51

Another popular option–especially for Amazon EKS–is to use Prometheus52.

Prometheus is an open-source monitoring and alerting toolkit that is often

used in combination with Grafana 53to visualize the collected metrics. Many

Kubernetes components store metrics at /metrics and Prometheus can

scrape these metrics at a regular interval.

Centralizing Logs

Consistent logging is critical for troubleshooting and identifying issues.

Microservices allow teams to ship many more releases than ever before and

encourage engineering teams to run experiments on new features in

production. Understanding customer impact is crucial to improving an

application gradually.

Most AWS services centralize their log files by default. The primary

destinations for log files on AWS are Amazon S3 and Amazon CloudWatch

Logs. For applications running on EC2 instances, a daemon is available to

send log files to CloudWatch Logs. Lambda functions natively send their log

output to CloudWatch Logs and Amazon ECS includes support for the

awslogs log driver that allows the centralization of container logs to

CloudWatch Logs.54 For Amazon EKS, it is necessary to run FluentD which

forwards logs from the individual instances in the cluster to a centralized

logging CloudWatch Logs where they are combined for higher-level

reporting using Elasticsearch and Kibana.

Figure 10 illustrates the logging capabilities of some of the services. Teams

are then able to search and analyze these logs using tools like Amazon

Elasticsearch Service (Amazon ES)55 and Kibana. Amazon Athena56 can be

used to run ad hoc queries against centralized log files in Amazon S3.

https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/athena/

Amazon Web Services – Implementing Microservices on AWS

Page 21

Figure 10: Logging capabilities of AWS services

Distributed Tracing

In many cases, a set of microservices works together to handle a request.

Imagine a complex system consisting of tens of microservices in which an

error occurs in one of the services in the call chain. Even if every

microservice is logging properly and logs are consolidated in a central

system, it can be difficult to find all relevant log messages.

The central idea behind AWS X-Ray57 is the use of correlation IDs, which

are unique identifiers attached to all requests and messages related to a

specific event chain. The trace ID is added to HTTP requests in specific

tracing headers named X-Amzn-Trace-Id when the request hits the first

X-Ray-integrated service (for example, Application Load Balancer or API

Gateway) and included in the response. Via the X-Ray SDK, any

microservice can read but can also add or update this header.

AWS X-Ray works with Amazon EC2, Amazon ECS, Lambda, and AWS

Elastic Beanstalk58. You can use X-Ray with applications written in Java,

Node.js, and .NET that are deployed on these services.

https://aws.amazon.com/xray/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/

Amazon Web Services – Implementing Microservices on AWS

Page 22

Figure 11: AWS X-Ray service map

Options for Log Analysis on AWS

Searching, analyzing, and visualizing log data is an important aspect of

understanding distributed systems. Amazon CloudWatch Logs Insights is a

great service to explore, analyze, and visualize your logs instantly. This

allows you to troubleshoot operational problems. Another option for

analyzing log files is to use Amazon ES together with Kibana.

Amazon ES can be used for full-text search, structured search, analytics,

and all three in combination. Kibana is an open source data visualization

plugin for Amazon ES that seamlessly integrates with it.

Figure 12 demonstrates log analysis with Amazon ES and Kibana.

CloudWatch Logs can be configured to stream log entries to Amazon ES in

near real time through a CloudWatch Logs subscription. Kibana visualizes

the data and exposes a convenient search interface to data stores in

Amazon ES. This solution can be used in combination with software like

ElastAlert to implement an alerting system in order to send SNS

notifications, emails, create JIRA tickets, etc., if anomalies, spikes, or other

patterns of interest are detected in the data.59

https://github.com/Yelp/elastalert

Amazon Web Services – Implementing Microservices on AWS

Page 23

Figure 12: Log analysis with Amazon Elasticsearch Service and Kibana

Another option for analyzing log files is to use Amazon Redshift60 together

with Amazon QuickSight61.

Amazon QuickSight can be easily connected to AWS data services,

including Amazon Redshift, Amazon RDS, Amazon Aurora, Amazon EMR,

Amazon DynamoDB, Amazon S3, and Amazon Kinesis.

Amazon CloudWatch Logs can act as a centralized store for log data, and, in

addition to only storing the data, it is possible to stream log entries to

Amazon Kinesis Data Firehose.

Figure 13 depicts a scenario where log entries are streamed from different

sources to Amazon Redshift using CloudWatch Logs and Kinesis Data

Firehose. Amazon QuickSight uses the data stored in Amazon Redshift for

analysis, reporting, and visualization.

https://aws.amazon.com/redshift/
https://aws.amazon.com/quicksight/

Amazon Web Services – Implementing Microservices on AWS

Page 24

Figure 13: Log analysis with Amazon Redshift and Amazon QuickSight

Figure 14 depicts a scenario of log analysis on Amazon S3. When the logs

are stored in S3 buckets, the log data can be loaded in different AWS data

services, such as Amazon Redshift or Amazon EMR, to analyze the data

stored in the log stream and find anomalies.

Figure 14: Log analysis on Amazon S3

Amazon Web Services – Implementing Microservices on AWS

Page 25

Chattiness

By breaking monolithic applications into small microservices, the

communication overhead increases because microservices have to talk to

each other. In many implementations, REST over HTTP is used because it

is a lightweight communication protocol but high message volumes can

cause issues. In some cases, you might consider consolidating services that

send many messages back and forth. If you find yourself in a situation where

you consolidate more and more of your services just to reduce chattiness,

you should review your problem domains and your domain model.

Protocols

Earlier in this whitepaper, in the section Asynchronous Communication and

Lightweight Messaging, different possible protocols are discussed. For

microservices it is common to use simple protocols like HTTP. Messages

exchanged by services can be encoded in different ways, such as human-

readable formats like JSON or YAML, or efficient binary formats such as

Avro or Protocol Buffers.

Caching

Caches are a great way to reduce latency and chattiness of microservices

architectures. Several caching layers are possible, depending on the actual

use case and bottlenecks. Many microservice applications running on AWS

use Amazon ElastiCache to reduce the volume of calls to other

microservices by caching results locally. API Gateway provides a built-in

caching layer to reduce the load on the backend servers. In addition,

caching is also useful to reduce load from the data persistence layer. The

challenge for any caching mechanism is to find the right balance between a

good cache hit rate and the timeliness/consistency of data.

Auditing

Another challenge to address in microservices architectures, which can

potentially have hundreds of distributed services, is ensuring visibility of user

actions on each service and being able to get a good overall view across all

services at an organizational level. To help enforce security policies, it is

important to audit both resource access as well as activities that lead to

system changes.

Changes must be tracked at the individual service level as well as across

services running on the wider system. Typically, changes occur frequently in

Amazon Web Services – Implementing Microservices on AWS

Page 26

microservices architectures, which makes auditing changes even more

important. In this section, we look at the key services and features within

AWS that can help you audit your microservices architecture.

Audit Trail

AWS CloudTrail62 is a useful tool for tracking changes in microservices

because it enables all API calls made in the AWS Cloud to be logged and

sent to either CloudWatch Logs in real time, or to Amazon S3 within several

minutes.

All user and automated system actions become searchable and can be

analyzed for unexpected behavior, company policy violations, or debugging.

Information recorded includes a timestamp, user/account information, the

service that was called, the service action that was requested, the IP

address of the caller, as well as request parameters and response elements.

CloudTrail allows the definition of multiple trails for the same account, which

allows different stakeholders, such as security administrators, software

developers, or IT auditors, to create and manage their own trail. If

microservice teams have different AWS accounts, it is possible to aggregate

trails into a single S3 bucket.63

The advantages of storing the audit trails in CloudWatch are that audit trail

data is captured in real time, and it is easy to reroute information to Amazon

ES for search and visualization. You can configure CloudTrail to log into

both Amazon S3 and CloudWatch Logs.

Events and Real-Time Actions

Certain changes in systems architectures must be responded to quickly and

either action taken to remediate the situation, or specific governance

procedures to authorize the change must be initiated.

The integration of CloudWatch Events with CloudTrail allows it to generate

events for all mutating API calls across all AWS services. It is also possible

to define custom events or generate events based on a fixed schedule.

When an event is fired and matches a defined rule, the right people in your

organization can be immediately notified, enabling them to take the

appropriate action. If the required action can be automated, the rule can

automatically trigger a built-in workflow or invoke a Lambda function to

resolve the issue.

https://aws.amazon.com/cloudtrail/

Amazon Web Services – Implementing Microservices on AWS

Page 27

Figure 15 shows an environment where CloudTrail and CloudWatch Events

work together to address auditing and remediation requirements within a

microservices architecture. All microservices are being tracked by CloudTrail

and the audit trail is stored in an S3 bucket. CloudWatch Events sit on top of

CloudTrail and triggers alerts when a specific change is made to your

architecture.

Figure 15: Auditing and remediation

Resource Inventory and Change Management

To maintain control over fast-changing infrastructure configurations in an

agile development environment, having a more automated, managed

approach to auditing and controlling your architecture is essential.

While CloudTrail and CloudWatch Events are important building blocks to

track and respond to infrastructure changes across microservices, AWS

Config64 rules allow a company to define security policies with specific rules

to automatically detect, track, and alert you to policy violations.

The next example demonstrates how it is possible to detect, inform, and

automatically react to non-compliant configuration changes within your

microservices architecture. A member of the development team has made a

change to the API Gateway for a microservice to allow the endpoint to

accept inbound HTTP traffic, rather than only allowing HTTPS requests.

Because this situation has been previously identified as a security

https://aws.amazon.com/config/
https://aws.amazon.com/config/

Amazon Web Services – Implementing Microservices on AWS

Page 28

compliance concern by the organization, an AWS Config rule is already

monitoring for this condition.

The rule identifies the change as a security violation, and performs two

actions: it creates a log of the detected change in an S3 bucket for auditing,

and it creates an SNS notification. Amazon SNS is used for two purposes in

our scenario: to send an email to a specified group to inform about the

security violation, and to add a message to an SQS queue. Next, the

message is picked up, and the compliant state is restored by changing the

API Gateway configuration.

Figure 16: Detecting security violations with AWS Config

Conclusion

Microservices architecture is a distributed design approach intended to

overcome the limitations of traditional monolithic architectures. Microservices

help to scale applications and organizations while improving cycle times.

However, they also come with a couple of challenges that might add

additional architectural complexity and operational burden.

AWS offers a large portfolio of managed services that can help product

teams build microservices architectures and minimize architectural and

operational complexity. This whitepaper guides you through the relevant

AWS services and how to implement typical patterns, such as service

discovery or event sourcing, natively with AWS services.

Amazon Web Services – Implementing Microservices on AWS

Page 29

Contributors

The following individuals and organizations contributed to this document:

• Sascha Möllering, Solutions Architecture, AWS

• Christian Müller, Solutions Architecture, AWS

• Matthias Jung, Solutions Architecture, AWS

• Peter Dalbhanjan, Solutions Architecture, AWS

• Peter Chapman, Solutions Architecture, AWS

• Christoph Kassen, Solutions Architecture, AWS

Document Revisions

Date Description

August 2019 Minor text changes.

June 2019 Integration of Amazon EKS, AWS Fargate, Amazon MQ,

AWS PrivateLink, AWS App Mesh, AWS Cloud Map

September 2017 Integration of AWS Step Functions, AWS X-Ray, and ECS

event streams.

December 2016 First publication

1 https://12factor.net/

2 https://aws.amazon.com/s3/

3 https://aws.amazon.com/cloudfront/

4 https://en.wikipedia.org/wiki/Representational_state_transfer

5 https://aws.amazon.com/lambda/
6 https://aws.amazon.com/fargate/

7 https://www.docker.com/

8 https://aws.amazon.com/ecs/
9 https://aws.amazon.com/eks/

Notes

https://aws.amazon.com/s3/
https://aws.amazon.com/cloudfront/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://aws.amazon.com/lambda/
https://aws.amazon.com/fargate/
https://www.docker.com/
https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/

Amazon Web Services – Implementing Microservices on AWS

Page 30

10 https://aws.amazon.com/ebs/
11 https://aws.amazon.com/iam/

12 https://aws.amazon.com/ecr/

13 https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-

integration-continuous-delivery-on-AWS.pdf

14 https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-

interface.html

15 https://aws.amazon.com/elasticache/
16 https://aws.amazon.com/rds/aurora/
17 https://aws.amazon.com/rds/
18 https://aws.amazon.com/dynamodb/
19 https://aws.amazon.com/dynamodb/dax/

20 https://aws.amazon.com/ec2/

21 http://swagger.io/

22 https://aws.amazon.com/api-gateway/

23 https://twitter.com/awsreinvent/status/652159288949866496

24 http://docs.aws.amazon.com/apigateway/latest/developerguide/getting-

started.html

25 https://aws.amazon.com/rds/aurora/serverless/
26 https://aws.amazon.com/cloudformation/

27 https://github.com/awslabs/serverless-application-model

28 https://aws.amazon.com/route53/

29 https://github.com/kubernetes-incubator/external-dns

30 https://aws.amazon.com/cloud-map/

31 https://www.consul.io/

32 https://github.com/coreos/etcd

33 https://github.com/Netflix/eureka

34 https://aws.amazon.com/quickstart/architecture/consul/

35 https://aws.amazon.com/app-mesh/

36 https://en.wikipedia.org/wiki/CAP_theorem

37 https://en.wikipedia.org/wiki/ACID_(computer_science)

38 https://aws.amazon.com/step-functions/

39 https://en.wikipedia.org/wiki/Master_data_management

40 http://docs.aws.amazon.com/lambda/latest/dg/with-scheduled-events.html

https://aws.amazon.com/ebs/
https://aws.amazon.com/iam/
https://aws.amazon.com/ecr/
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpce-interface.html
https://aws.amazon.com/elasticache/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/rds/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/dax/
https://aws.amazon.com/ec2/
http://swagger.io/
https://aws.amazon.com/api-gateway/
https://twitter.com/awsreinvent/status/652159288949866496
http://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started.html
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/cloudformation/
https://github.com/awslabs/serverless-application-model
https://aws.amazon.com/route53/
https://github.com/kubernetes-incubator/external-dns
https://aws.amazon.com/cloud-map/
https://www.consul.io/
https://github.com/coreos/etcd
https://github.com/Netflix/eureka
https://aws.amazon.com/quickstart/architecture/consul/
https://aws.amazon.com/app-mesh/
https://en.wikipedia.org/wiki/CAP_theorem
https://aws.amazon.com/step-functions/
https://en.wikipedia.org/wiki/Master_data_management
http://docs.aws.amazon.com/lambda/latest/dg/with-scheduled-events.html

Amazon Web Services – Implementing Microservices on AWS

Page 31

41 http://martinfowler.com/eaaDev/EventSourcing.html

42 http://martinfowler.com/bliki/CQRS.html

43 https://aws.amazon.com/kinesis/data-streams/
44 https://aws.amazon.com/sqs/
45 https://aws.amazon.com/sns/
46 https://aws.amazon.com/amazon-mq/
47 https://aws.amazon.com/sagemaker/
48 https://aws.amazon.com/glue/

49 https://states-language.net/spec.html

50 https://aws.amazon.com/cloudwatch/

51

https://docs.aws.amazon.com/autoscaling/latest/userguide/policy_creating.

html

52 https://prometheus.io/docs/introduction/overview/

53 https://grafana.com/

54

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_a

wslogs.html

55 https://aws.amazon.com/elasticsearch-service/
56 https://aws.amazon.com/athena/
57 https://aws.amazon.com/xray/
58 https://aws.amazon.com/elasticbeanstalk/

59 https://github.com/Yelp/elastalert

60 https://aws.amazon.com/redshift/
61 https://aws.amazon.com/quicksight/
62 https://aws.amazon.com/cloudtrail/

63 http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-

receive-logs-from-multiple-accounts.html

64 https://aws.amazon.com/config/

http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/bliki/CQRS.html
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/sqs/
https://aws.amazon.com/sns/
https://aws.amazon.com/amazon-mq/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/glue/
https://states-language.net/spec.html
https://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/autoscaling/latest/userguide/policy_creating.html
https://docs.aws.amazon.com/autoscaling/latest/userguide/policy_creating.html
https://prometheus.io/docs/introduction/overview/
https://grafana.com/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_awslogs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using_awslogs.html
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/athena/
https://aws.amazon.com/xray/
https://aws.amazon.com/elasticbeanstalk/
https://github.com/Yelp/elastalert
https://aws.amazon.com/redshift/
https://aws.amazon.com/quicksight/
https://aws.amazon.com/cloudtrail/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://aws.amazon.com/config/

	Abstract
	Introduction
	Simple Microservices Architecture on AWS
	User Interface
	Microservices
	Microservices Implementations
	Private Links

	Data Store

	Reducing Operational Complexity
	API Implementation
	Serverless Microservices
	Deploying Lambda-Based Applications

	Distributed Systems Components
	Service Discovery
	DNS-Based Service Discovery
	Third-party software
	Service Meshes

	Distributed Data Management
	Asynchronous Communication and Lightweight Messaging
	REST-based Communication
	Asynchronous Messaging and Event Passing
	Orchestration and State Management

	Distributed Monitoring
	Monitoring
	Centralizing Logs
	Distributed Tracing
	Options for Log Analysis on AWS

	Chattiness
	Protocols
	Caching

	Auditing
	Audit Trail
	Events and Real-Time Actions
	Resource Inventory and Change Management

	Conclusion
	Contributors
	Document Revisions

