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Abstract 

This document describes the Analytics Lens for the AWS Well-Architected Framework. 

The document covers common analytics applications scenarios and identifies key 

elements to ensure that your workloads are architected according to best practices. 

 

http://d1.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
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Introduction 

The AWS Well-Architected Framework helps you understand the pros and cons of 

decisions you make while building systems on AWS. 

By using the framework, you learn architectural best practices for designing and 

operating reliable, secure, efficient, and cost-effective systems in the cloud. It provides a 

way for you to consistently measure your architectures against best practices and 

identify areas for improvement. We believe that having well-architected systems greatly 

increases the likelihood of business success. 

In this “Lens” we focus on how to design, deploy, and architect your analytics 

application workloads in the AWS Cloud. For brevity, we have only covered details from 

the Well-Architected Framework that are specific to analytics workloads. You should still 

consider best practices and questions that have not been included in this document 

when designing your architecture. We recommend that you read the AWS Well-

Architected Framework whitepaper. 

This document is intended for those in technology roles, such as chief technology 

officers (CTOs), architects, developers, and operations team members. After reading 

this document, you will understand AWS best practices and strategies to use when 

designing architectures for analytics applications and environment. 

Definitions 

The AWS Well-Architected Framework is based on five pillars: operational excellence, 

security, reliability, performance efficiency, and cost optimization. For analytics 

workloads and environments, AWS provides multiple core components that allow you to 

design robust architectures for your analytics applications. In this section, we will 

present an overview of the services that will be used throughout this document. 

Organizing data architectures into conceptual “layers” allows appropriate access 

controls, pipelines, Extract, Transform, and Load (ETL) flows, and integrations specific 

to the use case. There are six areas that you should consider when building an 

analytics workload: 

• Data Ingestion Layer 

• Data Access and Security Layer 

• Catalog and Search Layer 

https://aws.amazon.com/well-architected
https://aws.amazon.com/architecture/well-architected
http://d0.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
http://d1.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
http://d1.awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
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• Central Storage Layer 

• Processing and Analytics Layer 

• User Access and Interface Layer 

Data Ingestion Layer 

The Data ingestion layer is responsible for ingesting data into the central storage for 

analytics, such as a data lake. It’s comprised of services that aid in consuming datasets 

in batch and real-time streaming modes from external sources, such as website 

clickstreams, database event streams, financial transactions, social media feeds, IT 

logs, location-tracking events, IoT telemetry data, on-premises data sources, and cloud-

native data stores. 

Amazon Kinesis is a family of services for ingesting real-time data and provides 

capabilities to securely load and analyze streaming data and stream data to Amazon 

Simple Storage Service (Amazon S3) for long-term storage. We also provide Amazon 

Managed Streaming for Kafka (MSK), which is a fully managed service that enables 

you to run highly available and secure Apache Kafka clusters to process streaming data 

without the need to modify your existing code base. 

With AWS Database Migration Services (DMS), you can replicate and ingest existing 

databases while the source databases remain fully operational. The service supports 

multiple database sources and targets, including writing data directly to Amazon S3. To 

accelerate DMS migrations, you can use AWS Snowball, which uses secure physical 

appliances to transfer large amounts of data into and out of the AWS Cloud. You should 

also investigate AWS Direct Connect, which creates a consistent, private network 

connection between your data center and AWS.  

You may also have additional data ingestion points, such as AWS IoT Core, a 

managed platform that can process and route messages at scale into AWS data stores 

reliably and securely. AWS DataSync is a data transfer service that simplifies, 

automates, and accelerates moving and replicating data between on-premises storage 

systems such as NFS and AWS storage services such as Amazon EFS and Amazon 

S3 to be ingested into your analytics workload. 

Data Access and Security Layer 

The data access and security layer provides a mechanism for accessing data assets 

while protecting them to ensure that the data is stored securely and access is provided 

to only those authorized. This layer enables: 
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• Secure data access to the central data repository (that is, the data lake) 

• Secure access to the central Data Catalog 

• Fine-grained access control on the Data Catalog’s databases, tables, and 

columns 

• Encryption of data assets in transit and at rest 

You must use AWS Identity and Access Management (IAM) to manage access to 

AWS services and resources securely. Using IAM, you can create and manage AWS 

users and groups, and use permissions to allow and deny their access to AWS 

resources. With AWS CloudTrail, you can log, continuously monitor, and retain account 

activity related to data access actions from those users and roles across your AWS 

infrastructure. You can also use Amazon CloudWatch to collect monitoring and 

operational data, in the form of logs, metrics, and events, for your analytics workload. 

To provide encryption at rest, use AWS Key Management Service (KMS), a secure 

and resilient service that makes it easy for you to create and control the encryption keys 

that encrypt your data. Some regulations require you to pair KMS with AWS 

CloudHSM, a cloud-based hardware security module (HSM) which enables you to 

easily generate and use your own encryption keys. AWS CloudHSM helps you 

demonstrate compliance with security, privacy, and anti-tamper regulations, such as 

HIPAA, FedRAMP, and PCI. You can configure KMS to use your CloudHSM cluster as 

a custom key store instead of the default KMS key store. 

AWS Lake Formation is an integrated data lake service that makes it easy for you to 

ingest, clean, catalog, transform, and secure your data and make it available for 

analysis and machine learning (ML). Lake Formation provides its own permissions 

model, which augments the AWS IAM permissions model, to configure data access and 

security policies for data lakes, and audit and control access from AWS analytic and ML 

services. This centrally defined permissions model enables fine-grained access to data 

stored in data lakes through a simple grant/revoke mechanism. 

Catalog and Search Layer 

The catalog and search layer of your analytics workload manages discovering and 

cataloging the metadata pertaining to your data assets. This layer also provides search 

capabilities as data assets grow in quantity and size—scenarios where you want to find 

a table based on criteria that you define and extract subsets of data—are quite common 

in analytics applications.  
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AWS Glue is a fully managed extract, transform, and load (ETL) service that makes it 

easy for customers to prepare and load their data for analytics. You can point AWS 

Glue to your data stored on AWS, and it discovers your data and stores the associated 

metadata (for example, its table definition and schema) in the AWS Glue Data Catalog. 

Once cataloged, your data is immediately searchable, queryable, and available for ETL. 

With Amazon Elasticsearch Service, you can deploy fully managed Elasticsearch 

clusters in the AWS Cloud to search your data assets. You get direct access to the 

Elasticsearch APIs—existing code and applications work seamlessly with the service 

and includes managed Kibana, integration with Logstash and other AWS services, built-

in alerting, and SQL querying. 

Amazon Relational Database Service (Amazon RDS) makes it easy to set up, 

operate, and scale a relational database in the cloud. In addition to AWS Glue, you can 

use Amazon RDS to create an external Hive metastore for EMR. The metastore 

contains a description of the table and the underlying data on which it is built, including 

the partition names, data types, and so on. 

Amazon DynamoDB is a NoSQL data store that can be used to create a high 

performance, low-cost external index that maps queryable attributes to Amazon S3 

object keys. Amazon DynamoDB automatically scales and remains highly available 

without the need to maintain traditional servers. 

Central Storage Layer  

The central storage layer manages the storage of data as it’s ingested from a variety of 

producers and makes it available to downstream applications. This layer is at the core 

of a data lake and should support housing of all types of data: unstructured, semi-

structured, and structured data. As data grows over time, this layer should scale 

elastically in a secure and cost-effective manner. 

In data processing pipelines, data might be stored at intermediate stages of processing, 

both to avoid needless duplication of work up to that point in the pipeline, as well as to 

make intermediate data available to multiple downstream consumers. Intermediate data 

might be frequently updated, stored temporarily, or stored long term, depending on the 

use case. 

Amazon S3 provides an optimal foundation for central storage because of its virtually 

unlimited scalability, 99.999999999% (11 “nines”) of durability, native encryption, and 

access control capabilities. As data storage requirements increase over time, data can 

be transitioned to lower-cost tiers, such as S3 Infrequent Access or Amazon S3 Glacier, 
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through lifecycle policies to save on storage costs while still preserving the original, raw 

data. You can also use S3 Intelligent-Tiering, which optimizes storage costs 

automatically when data access patterns change, without performance impact or 

operational overhead. 

Amazon S3 makes it easy to build a multi-tenant environment, where many users can 

bring their own data analytics tools to a common set of data. This improves both cost 

and data governance over that of traditional solutions, which commonly require multiple, 

distributed copies of the data. To enable easy access, Amazon S3 provides RESTful 

APIs that are simple and supported by Apache Hadoop as well as most major third-

party independent software vendors (ISVs) and analytics tool vendors.  

With Amazon S3, your data lake can decouple storage from compute and data 

processing. In traditional Hadoop and data warehouse solutions, storage and compute 

are tightly coupled, making it difficult to optimize costs and data processing workflows. 

Amazon S3 allows you to store all data types in their native formats and use as many or 

as a few virtual servers as you want to process the data. You can also integrate with 

serverless solutions, such as AWS Lambda, Amazon Athena, Amazon Redshift 

Spectrum, Amazon Rekognition, and AWS Glue, that allow you to process data without 

provisioning or managing servers. 

Amazon Elastic Block Store (EBS) provides persistent block storage volumes for use 

with Amazon EC2 instances in the AWS Cloud. Each Amazon EBS volume is 

automatically replicated within its Availability Zone to protect you from component 

failure, which provides high availability and durability. For analytics workloads, you can 

use EBS with Big Data analytics engines (such as the Hadoop/HDFS ecosystem or 

Amazon EMR clusters), relational and NoSQL databases (such as Microsoft SQL 

Server and MySQL or Cassandra and MongoDB), stream and log processing 

applications (such as Kafka and Splunk), and data warehousing applications (such as 

Vertica and Teradata) running on EC2 instances. 

Processing and Analytics Layer 

The processing and analytics layer is responsible for providing tools and services for 

querying and processing (that is, cleansing, validating, transforming, enriching and 

normalizing) the datasets to derive business insights in both batch and real time 

streaming mode. There are many services that can be used for the processing and 

analytics layer.  

Amazon EMR is a managed service to easily run and scale Apache Spark, Hadoop, 

HBase, Presto, Hive, and other big data frameworks across dynamically scalable 
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Amazon EC2 instances and interact with data in other AWS data stores, such as 

Amazon S3 and Amazon DynamoDB. 

Amazon Redshift is a fully managed data warehouse that makes it simple and cost-

effective to analyze all your data using standard SQL and your existing Business 

Intelligence (BI) tools. Redshift Spectrum is a feature of Amazon Redshift that enables 

you to run queries against exabytes of unstructured data in Amazon S3, with no loading 

or ETL required. Redshift Spectrum can execute highly sophisticated queries against an 

exabyte of data or more—in just minutes. 

Amazon Athena is an interactive query service that makes it easy to analyze data in 

Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to 

manage, and you pay only for the queries that you run. Athena integrates with AWS 

Glue Data Catalog, allowing you to create a unified metadata repository across various 

services, crawl data sources to discover schemas, populate your catalog with new and 

modified table and partition definitions, and maintain schema versioning. 

With Amazon Neptune, you can create a fast, reliable, fully managed graph database 

that makes it easy to build and run applications that work with highly connected 

datasets. It supports popular graph models, such as Property Graph and W3C's RDF, 

and their respective query languages, Apache TinkerPop Gremlin and SPARQL. 

Amazon Neptune can power graph relationship use cases, such as recommendation 

engines, fraud detection, knowledge graphs, drug discovery, and network security. 

Amazon SageMaker is a fully managed machine learning platform that enables 

developers and data scientists to quickly and easily build, train, and deploy machine 

learning models at any scale. Data scientists can use it to easily create, train, and 

deploy ML models against data lake elements. 

Existing services can also be used for processing and analytics, including Amazon 

Kinesis, Amazon RDS, Apache Kafka, and AWS Glue ETL jobs. 

User Access and Interface Layer 

The user access and interface layer provides a secure means for user access and an 

administrative interface for managing users.  

AWS Lambda lets you run stateless serverless applications on a managed platform 

that supports microservices architectures, deployment, and management of execution 

at the function layer. 
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With Amazon API Gateway, you can run a fully managed REST API that integrates 

with Lambda to execute your business logic and includes traffic management, 

authorization and access control, monitoring, and API versioning. For example, you can 

create a data lake API using API Gateway that receives requests via HTTPS. When an 

API request is made, Amazon API Gateway leverages a custom authorizer (a Lambda 

function) to ensure that all requests are authorized before data is served. 

With Amazon Cognito, you can easily add user sign-up, sign-in, and data 

synchronization to serverless applications. Amazon Cognito user pools provide built-in 

sign-in screens and federation with Facebook, Google, and Amazon, using Security 

Assertion Markup Language (SAML). Amazon Cognito Federated Identities lets you 

securely provide scoped access to AWS resources that are part of your serverless 

architecture. 

General Design Principles 

The Well-Architected Framework identifies a set of general design principles to facilitate 

good design in the cloud for analytics applications: 

• Automate data ingestion: Ingestion of data should be automated using triggers, 

schedules, and change detection. Automating the collection process eliminates 

error-prone manual processes, allows data to be processed as it arrives, and 

allows you to create and replicate your systems at low cost. You can leverage 

the schedulers available in orchestration tools to schedule and trigger ingestion 

at periodic intervals or run the ingestion scripts continuously for streaming 

applications. 

• Design ingestion for failures and duplicates: Ingestion triggered from 

requests and events must be idempotent, as failures can occur and a given 

message might be delivered more than once. Include appropriate retries for 

downstream calls.  

• Preserve original source data: Ingested raw data should be preserved as is 

because having raw data in its pristine form allows you to repeat the ETL process 

in case of failures. No transformation of the original data files should occur during 

the pipeline execution. 
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• Describe data with metadata: As datasets tend to grow in variety and volume, 

it’s essential that any dataset that makes its way into a data store environment is 

discoverable and classified. Capture metadata about the data store to ensure 

that the downstream applications are all able to leverage the ingested datasets. 

Ensure that this activity is well-documented and automated. 

• Establish data lineage: Data lineage refers to tracking data origin and its flow 

between different data systems. Having the ability to view, track, and manage 

data flow as it moves from source to the destination can greatly simplify tracing 

any errors along the analytics pipeline and get insights into how data has 

evolved. 

• Use the right ETL tool for the job: When it comes to extract, transform, and 

load (ETL) tools, there are several options: custom built to solve specific 

problems, assembled from open source projects, and commercially licensed ETL 

platforms. Select an ETL tool that closely meets your requirements for 

streamlining the workflow between the source and the destination. Factors to 

examine include support for complex workflows, APIs and specific languages, 

connectors to varied data stores, performance, budget, and enterprise scale. 

• Orchestrate ETL workflows: Automate ETL workflows. In an analytics 

environment, output from one process or job typically serves as an input to 

another. Chaining ETL jobs ensures the seamless execution of your ETL 

workflow while enabling you to track and debug any failures.  

• Tier storage appropriately: Store data in the optimal tier to ensure that you 

leverage the best features of the storage services for your analytics applications. 

There are two basic parameters when it comes to choosing the right storage 

service for your data: its format, and how often it’s accessed. By distributing your 

datasets into different services and then transitioning from one service to 

another, you can build a robust backend storage infrastructure for your analytical 

applications. 

• Secure, protect, and manage your entire analytics pipeline: Both the data 

assets and the infrastructure for storing, processing, and analyzing data must be 

secured. Securing your data assets begins with implementing fine-grained 

controls that allow authorized users to see, access, process, and modify 

particular assets, while ensuring that unauthorized users are blocked from taking 

any actions that would compromise data confidentiality and security. Access 

roles might change at various stages of an analytics pipeline, requiring you to 

ensure that only authorized users have access at each stage.  
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• Design for scalable and reliable analytics pipelines: Make analytics execution 

compute environments reliable and scalable such that the volume or velocity of 

data does not impact the production pipelines. Provide high data reliability and 

optimized query performance to support different analytics applications, from 

batch and streaming ingests, fast ad hoc queries to data science are top priorities 

when architecting analytics workflows. 

Scenarios 

In this section, we cover the five key scenarios that are common in many analytics 

applications and how they influence the design and architecture of your analytics 

environment on AWS. We present the assumptions made for each of these scenarios, 

the common drivers for the design, and a reference architecture for how these 

scenarios should be implemented. 

Data Lake 

A data lake is a centralized repository that allows you to store all your structured and 

unstructured data at any scale. You can store your data as-is, without having to first 

structure the data, and run different types of analytics—from dashboards and 

visualizations to big data processing, real-time analytics, and machine learning—to 

guide better decisions. 

Organizations that successfully generate business value from their data using a data 

lake are able to do new types of analytics, such as machine learning on data from log 

files, click-streams, social media, and internet connected devices. This can help you to 

identify and act upon opportunities for business growth faster by attracting and retaining 

customers, boosting productivity, proactively maintaining devices, and making informed 

decisions. 

The main challenge with a data lake architecture is that raw data is stored with no 

oversight of the contents. To make the data usable, you must have defined mechanisms 

to catalog and secure the data. Without these mechanisms, data cannot be found or 

trusted, resulting in a “data swamp.” Meeting the needs of diverse stakeholders requires 

data lakes to have governance, semantic consistency, and access controls. 

Characteristics 

• Regardless of the source type, data structure, or amount, all the original source 

data should be in one place, creating a “Single Source of Truth”. 

https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/
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• A data lake should always decouple storage and compute. 

• A data lake should support quick ingestion and consumption, not only in terms of 

speed, but also to allow flexibility in the data design. Data providers should only 

have to be told where to put the data, that is, which S3 bucket. The choice of 

storage structure, schema, ingestion frequency, and data quality should be left to 

the data producer. 

• A data lake supports schema on read. Multiple schemas can be used when 

ingesting data from a data lake into a compute environment, unlike the fixed 

structure of records data stored within a data warehouse. 

• A data lake should be designed for low-cost storage. This allows historical data 

to be kept longer at lower cost, as its overall business value declines over time. 

• A data lake supports protection and security rules, which provide mechanisms to 

allow only authorized access to the data, and tracking how data is used as it 

flows through tiers within the lake. 

Reference Architecture 

 

Figure 1: Organizational Dynamics of a Data Lake 

• Data Producers are the organizational revenue generators. These entities, be it 

logical (software) or physical (Application users) are not mandated to conform to 

any contract (schema, frequency, structure, etc.) associated with the data they 

produce—except for where to store the data they produce in the data lake. 
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• Data Lake Team is often made up of an operations team, which defines the 

security and policy mechanisms that are mandated within the data lake, and the 

development team that supports ongoing schema and ETL management. 

• Data Consumers retrieve data from the data lake using the mechanisms 

authorized by the Data Lake Team, and further iterate on that data to meet 

business needs. 

 

 

Figure 2: High-Level Data Lake Technical Reference Architecture 

 

1. Amazon S3 is at the core of a data lake on AWS. Amazon S3 supports the 

object storage of all the raw and iterative datasets that are created and used by 

ETL processing and analytics environments. The high-level structure housing 

the data within Amazon S3 is organized in two or three tiers depending on the 

business requirements of the data lake 

o Tier 1 Storage (Raw Data) – this storage tier is one or more S3 buckets 

that host the raw data coming from the ingestion services. It’s important that 

the data stored in this tier is maintained and preserved in its original form 

and that no data transformation occurs.  
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o Tier 2 Storage Analytics Optimized – this storage tier hosts the iterative 

datasets resulting from the transformation of the raw data in Tier 1 into 

common columnar formats (such as Parquet, ORC, or Avro) using ETL Job 

processing (for example, Spark on EMR, or AWS Glue). Organizing data 

into partitions and storing it in a columnar format allows compute 

environments that ingest Tier 2 data to achieve better performance at lower 

costs. 

o Tier 3 Use-Case-Specific Data Mart (optional) – the data hosted in this 

tier is a subset from Tier 2 that has been organized for specific use case 

data marts. Tier 3 data often has high access and security constraints. 

Depending on the use case, the data is served from more applicable 

compute and analytics environments, such as Amazon EMR, Amazon 

Redshift, Amazon Neptune, and Amazon Aurora. 

 

2. The Data Ingestion component of the data lake architecture represents a 

process to persist data in Amazon S3. Data originating from this section of the 

data lake is intended to be Tier 1 raw data. The data producing services do not 

have any constraints, structure conformity requirements, or contracts on the 

data, except for a predetermined S3 bucket where data is stored. 

3. Processing & Analytics consists of AWS services that are used to process or 

ETL data from Tier 1 and deliver the processed data to Tier 2. The data in Tier 2 

can then be consumed by an analytics or machine learning environment which 

does interactive querying or machine learning and model building. 

4. Protect & Secure is an overarching abstraction that integrates into multiple 

services that comprise the data lake. This data lake section is intended to 

communicate the importance of taking into account Authentication, 

Authorization, Auditing, Compliance and Encryption at Rest/Transit as they 

apply to the ingestion, storage, and processing/analytics portions of the data 

lake. Most of these security concepts are integrated into each data processing 

service as a feature set to protect the access and integrity of the data the 

services are managing. For more information on how different security focused 

services, such as KMS, IAM, and CloudTrail, are integrated into ingestion and 

analytics services like Kinesis and Amazon Redshift, see the Security Pillar 

section. 
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5. The Catalog & Search component ensures that the metadata about the 

datasets hosted in the storage portion (Amazon S3) of the data lake are 

captured, governed, maintained, indexed, and searchable. This often requires 

an organizational mandate on the minimal set of metadata (that is, description, 

tags, usage instructions, etc.) required for each dataset managed in the data 

lake catalog. This also ensures that all the individual objects that make up a data 

lake dataset are mapped to the overarching dataset metadata record. You can 

leverage such AWS services as DynamoDB, Elasticsearch Service, and the 

AWS Glue Catalog to track and index the metadata of the datasets hosted within 

your data lake. Using AWS Lambda functions that are triggered by Amazon S3 

during new or updated object events, you can easily keep your catalog up to 

date. 

 

6. Access & User Interface  

On AWS, services including Amazon API Gateway, AWS Lambda, and AWS 

Directory Service enable you to track and securely execute: 

o The creation, modification, and deletion of new data lake datasets and their 

corresponding metadata. 

o The creation and management of ETL jobs that create, update, and 

coalesce iterative datasets that would transform raw Tier 1 Data into 

columnar, compressed and performant Tier 2 Data. 

o Create, delete, or modify analytics compute environments that ingest Tier 2 

data for follow-on querying, visualization development, and insights analysis. 

Configuration Notes 

• Decide on a location for data lake ingestion (that is, S3 bucket). Select a 

frequency and isolation mechanism that meets your business needs. 

• For Tier 2 Data, partition the data with keys that align to common query filters. 

This enables pruning by common analytics tools that work on raw data files and 

increases performance. 

• Choose optimal file sizes to reduce Amazon S3 round trips during compute 

environment ingestion: 

o Recommended: 512 MB – 1 GB in a columnar format (ORC/Parquet) per 

partition. 

https://aws.amazon.com/api-gateway/
https://aws.amazon.com/lambda/
https://aws.amazon.com/directoryservice/
https://aws.amazon.com/directoryservice/
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• Perform frequent scheduled compactions that align to the optimal file sizes noted 

previously. 

o For example, compact into daily partitions if hourly files are too small. 

• For data with frequent updates or deletes (that is, mutable data): 

o Temporarily store replicated data to a database like Amazon Redshift, 

Apache Hive, or Amazon RDS until the data becomes static, and then 

offload it to Amazon S3, or 

o Append the data to delta files per partition and compact it on a scheduled 

basis using AWS Glue or Apache Spark on EMR. 

• With Tier 2 and Tier 3 Data being stored in Amazon S3: 

o Partition data using a high cardinality key. This is honored by Presto, 

Apache Hive, and Apache Spark and improves the query filter performance 

on that key. 

o Sort data in each partition with a secondary key that aligns to common filter 

queries. This allows query engines to skip files and get to requested data 

faster. 

Batch Data Processing 

Most analytics applications require frequent batch processing, for example, to update 

data stores with pre-aggregated results to make reporting queries faster and simpler for 

end users. Batch systems must be built to scale to all sizes of data and grow 

proportionally to the size of the data set being processed. 

The rapid expansion of data sources and sizes demands a batch data processing 

system that is flexible without compromise. Business requirements might dictate that 

batch data processing jobs be bound by an SLA, or have certain budget thresholds. 

These requirements should determine the characteristics of the batch processing 

architecture. 

On AWS, services including Amazon EMR, AWS Glue, and AWS Batch enable you to 

run distributed compute frameworks across dynamically scalable EC2 instances or fully 

managed environments. In a batch processing context, Amazon EMR provides the 

capability to read and write data to Amazon S3, NoSQL on DynamoDB, SQL databases 

on Amazon RDS, Amazon Redshift, Hadoop Distributed File Systems (HDFS), and 

more. Popular frameworks such as Spark, MapReduce, and Flink can be used to 
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distribute work over dynamically scaled clusters. AWS Batch can be used to run 

standalone or array jobs using Docker containers deployed on dynamically scalable 

container compute infrastructure. With AWS Glue, you can run Spark jobs without 

managing any EC2 instances. 

By reading and writing data from external sources that are separate from the batch 

processing compute environments, you decouple storage from compute. In doing so, 

you can examine running Amazon EMR, AWS Batch, and AWS Glue resources only 

when jobs are scheduled. This presents a paradigm shift from the traditional model for 

batch processing systems. Now, you can run compute resources transiently only when 

they are actually processing the data. Amazon EMR and AWS Batch are also highly 

integrated with EC2 Spot Instances, allowing you to run EC2 instances and save on 

cost compared to On-Demand Instance EC2 Instance prices. 

Characteristics 

• You want to create a batch data processing system with minimal management of 

clusters and compute resources. 

• You want to reduce the time it takes for your business or end users to run 

insightful queries, and make it easier for them to understand the data. 

• You want to run batch data processing compute resources only when they are 

needed, and shut them down when they are not. 
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Reference Architecture 

 

Figure 3: High-Level Batch Data Processing Architecture 
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1. Batch data processing systems typically require a persistent data store for source 

data. This is important when considering reliability of your system. Persisting 

your source datasets in durable storage enables you to retry processing jobs in 

case of failure and unlock new value streams in the future. On AWS, you have an 

extensive set of options for source data storage. Amazon S3, Amazon RDS, 

Amazon DynamoDB, Amazon EFS, Amazon Elasticsearch Service, Amazon 

Redshift, and Amazon Neptune are managed database and storage services 

you can use as source data stores. You also have the option of using Amazon 

EC2 and EBS to run your own database or storage solutions. See the Data Lake 

and Building an Efficient Storage Layer for Analytics scenarios for deeper dives 

into these options. 

2. Batch data processing systems should be automated and scheduled for 

reliability, performance efficiency, and cost optimization. You can use Amazon 

CloudWatch Events to trigger downstream jobs based on schedules (for 

example, once a day) or events (for example, when new files are uploaded). 

3. It’s common for batch data processing jobs to have multiple steps—some of 

which might happen in sequence or in parallel. Using an orchestration service, 

such as AWS Step Functions, makes it easy to implement automated 

workflows for simple and complex processing jobs. With AWS Step Functions 

you can build distributed data processing applications using visual workflows. 

Within an AWS Step Functions workflow, you can use Lambda functions and 

native service integrations to trigger Amazon EMR steps, AWS Glue ETL Jobs, 

AWS Batch jobs, Amazon SageMaker jobs, and custom jobs on Amazon EC2 or 

on premises.  

4. AWS Batch, AWS Glue, and Amazon EMR provide managed services and 

frameworks for batch job execution that fit your specific use case. You have 

different options for running jobs. For simple jobs that can run in Docker 

containers—such as video media processing, machine learning training, and file 

compression—AWS Batch provides a convenient way to submit jobs as Docker 

containers to a container compute infrastructure on Amazon EC2. For Apache 

Spark jobs in PySpark or Scala, you can use AWS Glue, which runs Spark jobs 

in a fully managed Spark environment. For other massively parallel processing 

jobs, Amazon EMR provides frameworks like Spark, MapReduce, Hive, Presto, 

Flink, and Tez that run on Amazon EC2 instances in your VPC. 
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5. Similar to the source data stores, batch jobs require reliable storage to store job 

outputs or results. You can use the AWS SDK for interacting with Amazon S3 

and DynamoDB, and use common file protocols and JDBC connections to store 

results in file systems or databases. 

6. Result datasets are commonly persisted and later accessed by visualization 

tools, such as Amazon QuickSight, APIs, and search-based queries. Based on 

the access pattern, you might choose data stores that best fit your use-case. 

See the Data Lake and Building an Efficient Storage Layer for Analytics 

scenarios for deeper dives into these storage options. 

Configuration Notes 

1. Use Batch Processing jobs to prepare large, bulk datasets for downstream 

analytics. For large, complex datasets, you may need to provide that data to end 

users and analysts in such a way that simplifies queries for them. In contrast, 

these users may find it difficult to query the raw data when they are trying to find 

simple aggregations. For example, you may want to preprocess a daily sales 

summarized view of your data for the previous day’s sales. This provides users 

with a table that has fewer rows and columns, making it easier and faster for 

business users to query the data. 

2. Avoid lifting and shifting batch processing to AWS. By lifting and shifting 

traditional batch processing systems into AWS, you risk running over-

provisioned resources on Amazon EC2. For example, traditional Hadoop 

clusters are often over-provisioned and idle in an on-premises setting. Use AWS 

managed services, such as AWS Glue, Amazon EMR, and AWS Batch, to 

simplify your architecture and remove the undifferentiated heavy lifting of 

managing clustered and distributed environments. 

 

By effectively leveraging these services with modern batch processing 

architectures that separate storage and compute, you present opportunities to 

save on costs by eliminating idle compute resources or underutilized disk 

storage space. Performance can also be improved by using EC2 instance types 

that are optimized for your specific batch processing tasks, rather than using 

multi-purpose persistent clusters. 
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3. Automate and orchestrate everywhere. In a traditional batch data processing 

environment, it’s a best practice to automate and schedule your jobs in the 

system. In AWS, you should leverage automation and orchestration for your 

batch data processing jobs in conjunction with the AWS APIs to spin up and tear 

down entire compute environments as well, so that you are only charged when 

the compute services are in use. For example, when a job is scheduled, a 

workflow service, such as AWS Step Functions, would use the AWS SDK to 

provision a new EMR cluster, submit the work, and terminate the cluster after 

the job is complete. 

4. Use Spot Instances to save on flexible batch processing jobs. Leverage 

Spot Instances when you have flexible job schedules, can retry jobs, and can 

decouple the data from the compute. Use Spot Fleet, EC2 Fleet, and Spot 

Instance features in EMR and AWS Batch to manage Spot Instances. 

5. Continuously monitor and improve batch processing. Batch processing 

systems evolve rapidly as data source volumes increase, new batch processing 

jobs are authored, and new batch processing frameworks are launched. 

Instrument your jobs with metrics, timeouts, and alarms to have the metrics and 

insight to make informed decisions on batch data processing system changes. 

Streaming Ingest and Stream Processing 

Ingesting and processing real-time streaming data requires scalability, reliability, and 

low latency to support a variety of applications. These applications include activity 

tracking, transaction order processing, click-stream analysis, data cleansing, metrics 

generation, log filtering, indexing, social media analysis, IoT device data telemetry and 

metering. These applications are often spiky and process thousands of events per 

second. 

With AWS, you can take advantage of the managed streaming data services offered by 

Amazon Kinesis, or deploy and manage your own streaming data solution in the cloud 

on Amazon EC2. See the definitions section for details on the streaming services that 

can be deployed on AWS. 

Consider the following characteristics as you design your stream processing pipeline for 

real-time ingestion and continuous processing. 

https://aws.amazon.com/kinesis/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/kinesis/
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Characteristics 

• Scalable: For real-time analytics, you should plan a resilient infrastructure that 

can adapt to changes in the rate of data flowing through the stream. Scaling is 

typically performed by an administrative application that monitors shard and 

partition data-handling metrics. You want the workers to automatically discover 

newly added shards or partitions, and distribute them equitably across all 

available workers to process. 

• Durable: Real-time streaming systems should provide high availability and data 

durability. For example, Amazon Kinesis Data Streams replicates data across 

three Availability Zones providing the high durability that streaming applications 

need. 

• Replayable reads: Streaming processing systems should provide ordering of 

records, as well as the ability to read or replay records in the same order to 

multiple consumers reading from the stream. 

• Fault-tolerance, checkpoint, and replay: Checkpointing refers to recording the 

farthest point in the stream that data records have been consumed and 

processed. If the application crashes, it can resume reading the stream from that 

point instead of having to start at the beginning. 

• Enable multiple processing applications in parallel: The ability for multiple 

applications to consume the same stream concurrently is an essential 

characteristic of a stream processing system. For example, you have one 

application that updates a real-time dashboard and another that archives data to 

Amazon Redshift. You want both applications to consume data from the same 

stream concurrently and independently. 

• Messaging Semantics: In a distributed messaging system, components might 

fail independently. Different messaging systems implement different semantic 

guarantees between a producer and a consumer in the case of such a failure. 

The most common message delivery guarantees implemented are: 

o At most once: Messages that could not be delivered, or are lost, are never 

redelivered. 

o At least once: Message might be delivered more than once to the 

consumer. 

o Exactly once: Message is delivered exactly once. 

  

https://aws.amazon.com/kinesis/data-streams/faqs/#datarecord
https://aws.amazon.com/kinesis/data-streams/faqs/#datarecord
https://aws.amazon.com/kinesis/data-streams/faqs/#datarecord
http://aws.amazon.com/redshift/
http://aws.amazon.com/redshift/
http://aws.amazon.com/redshift/
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Depending on your application needs, you need to choose a message delivery 

system that supports the required semantics. 

• Security: Streaming ingest and processing systems need to be secure by 

default. You need to restrict access to the streaming APIs and infrastructure as 

well as encrypt data at rest and in transit in the strea,. With Kinesis Data 

Streams, only the account and data stream owners have access to the Kinesis 

resources they create. Kinesis supports user authentication to control access to 

the data. You can use AWS IAM policies to selectively grant permissions to users 

and groups of users. You can securely put and get your data from Kinesis 

through SSL endpoints using the HTTPS protocol. If you run Apache Kafka, to 

ensure the security of your Kafka cluster, you need to deploy HTTPS, maintain 

certificate authorities, and configure the Kafka instances to use SSL to encrypt 

data in transit. 

Reference Architecture  

 

Figure 4: Streaming Data Analytics Reference Architecture  



Amazon Web Services Analytics Lens 

 22 

1. Data Producers: Multiple producers generate data continuously that might 

amount to terabytes of data per day. Producers can use Kinesis Agent, which is 

a standalone Java software application, to collect and send data to Amazon 

Kinesis Data Streams or Amazon Kinesis Data Firehose. The agent continuously 

monitors a set of files and sends new data to your delivery stream. The agent 

handles file rotation, checkpointing, and retry upon failures and delivers all of 

your data in a reliable, timely, and simple manner. If you use an operating system 

that is not compatible with the Kinesis agent, you could, alternatively, use Kinesis 

Producer Library (KPL) to achieve high write throughput to a Kinesis data stream. 

The KPL is an easy-to-use, highly configurable library that helps you write to a 

Kinesis data stream. It acts as an intermediary between your producer 

application code and the Kinesis Data Streams API actions. Producers can also 

use Kafka Producers to send messages to a Kafka cluster. 

2. Streaming Ingest: Kinesis Data Streams and Kinesis Data Firehose can ingest 

and process large streams of data records. Choose Kinesis Data Streams for 

rapid and continuous data intake and aggregation as the response time for the 

data intake and processing is in real time. Use Kinesis Data Firehose, a fully 

managed streaming service, to transform and deliver real-time streaming data to 

destinations such as Amazon S3, Amazon Redshift, Amazon Elasticsearch 

Service (Amazon ES), and Splunk. 

If you use Apache Kafka, you can deploy the cluster on Amazon EC2 to provide 

a high performance, scalable solution for ingesting streaming data. AWS offers 

many different instance types and storage option combinations for Kafka 

deployments. Alternatively, you can use Amazon Managed Streaming for Kafka 

(Amazon MSK) to build and run production applications on Apache Kafka without 

needing Apache Kafka infrastructure management expertise.  

3. Stream Processing: Real-time data streams can be processed sequentially and 

incrementally on a record-by-record basis over sliding time windows using a 

variety of services.  

For example, with Kinesis Data Analytics, you can process and analyze 

streaming data using standard SQL in a serverless way. The service enables you 

to quickly author and run SQL code against streaming sources to perform time 

series analytics, feed real-time dashboards, and create real-time metrics. The 

SQL query results can then be configured to fan out to external destinations such 

as Kinesis Data Firehose or Kinesis Data Streams.  

 

http://aws.amazon.com/streaming-data/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
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For data ingested using Kinesis Data Streams, you can develop a consumer 

application using the Kinesis Client Library (KCL). Although you can use the 

Kinesis Data Streams API to get data from a Kinesis data stream, we 

recommend using the design patterns and code for consumer applications 

provided by the KCL. You can use Kinesis Data Streams as a fully managed 

event source for Lambda functions.  

Another popular way to process streaming data is with Kinesis Data Firehose. 

Kinesis Data Firehose can invoke your Lambda function to transform incoming 

source data and deliver the transformed data to destinations. You can enable 

Kinesis Data Firehose data transformation when you create your delivery stream. 

If you work in a Hadoop environment, you can process streaming data using 

multiple options—Spark Streaming, Apache Flink or Structured Streaming. 

Customers can use streaming ingest solutions, such as Kinesis Data Streams, 

Amazon MSK, or Apache Kafka running on Amazon EC2 with Apache Spark 

Streaming, for fault-tolerant stream processing of live-data streams, and Spark 

SQL, which allows Spark code to execute relational queries, to build a single 

architecture to process real-time and batch data. 

Apache Flink is a streaming dataflow engine that you can use to run real-time 

stream processing on high-throughput data sources. Flink supports event time 

semantics for out-of-order events, exactly-once semantics, backpressure control, 

and APIs optimized for writing both streaming and batch applications. 

Additionally, Flink has connectors for third-party data sources, such as Amazon 

Kinesis, Apache Kafka, Amazon ES, Twitter Streaming API, and Cassandra. 

Amazon EMR supports Flink as a YARN application so that you can manage 

resources along with other applications within a cluster. Flink-on-YARN allows 

you to submit transient Flink jobs, or you can create a long-running cluster that 

accepts multiple jobs and allocates resources according to the overall YARN 

reservation. 

With Apache Kafka as the streaming source, you can also use Spark Structured 

Streaming on Amazon EMR. Structured Streaming is a fault-tolerant stream 

processing engine built over Spark SQL. 

http://spark.apache.org/streaming/
http://spark.apache.org/streaming/
http://spark.apache.org/streaming/
http://spark.apache.org/sql
http://spark.apache.org/sql
http://spark.apache.org/sql
https://flink.apache.org/
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4. Alerts, messaging fan-out and storage: Processed streaming data can be fed 

to a real-time predictive analytics system to derive inferences which in turn can 

be used for alerting using Amazon SNS. Messages that are processed can also 

be fanned out to Kinesis Data Streams, Kinesis Data Firehose, Kinesis Data 

Analytics, or AWS Lambda to generate new streams for further processing. 

Further down in the pipeline, applications can perform simple aggregation based 

on streaming data and emit processed data into Amazon S3. Other patterns 

include storing the real-time data in Amazon Redshift for complex analytics or 

DynamoDB for querying events or Amazon ES for full text search. 

5. Downstream analytics: Data processed on the fly using streaming 

technologies can be persisted to serve real-time analytics, machine learning, 

alerts, and additional custom actions.  

   

Configuration Notes 

1. Aggregate records before sending to Kinesis Data Streams. When using 

Kafka, ensure that the messages are accumulated on the producer side. 

2. When working with Kinesis Data Streams, use KCL to de-aggregate 

records. KCL takes care of many of the complex tasks associated with 

distributed computing — such as load balancing across multiple instances, 

responding to instance failures, checkpointing processed records, and reacting 

to re-sharding. 

3. Leverage AWS Spot Instances to process streaming data cost effectively. 

You can also process the data using AWS Lambda with Kinesis, and Kinesis 

Record Aggregation & Deaggregation Modules for AWS Lambda.  

4. Monitor Kinesis data stream metrics using Amazon CloudWatch. With 

Kinesis data streams you can get basic stream level metrics as well as shard 

level metrics. 

Lambda Architecture 

The analytics Lambda Architecture pattern seeks to unite big data streaming and batch 

processing systems into aggregated views. Traditional approaches to batch and stream 

processing sacrifice performance to use common tools. Other traditional approaches 

consisting of entangled systems are used without giving up performance, but are 

difficult to manage and require software domain-specific expertise. 

http://aws.amazon.com/s3/
http://aws.amazon.com/redshift/
http://aws.amazon.com/redshift/
https://github.com/awslabs/kinesis-aggregation
https://github.com/awslabs/kinesis-aggregation
https://github.com/awslabs/kinesis-aggregation
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AWS services, including Amazon EMR, Amazon Kinesis Data Streams, Amazon 

Kinesis Data Firehose, Amazon Kinesis Data Analytics, AWS Glue, and Amazon 

Athena, make it easy to bring stream and batch processing results together in a single 

serving layer for your end users, without having to manage complex infrastructure or 

cluster environments. 

Characteristics 

1. You have both batch data processing and streaming data that is interrelated, and 

integrating the two would provide faster insights for your business. 

2. You have already combined batch and streaming data, but the process is slow, 

complex, or difficult to manage (managing multiple open source stacks, like 

Apache Kafka, Apache Hadoop, etc., running on Amazon EC2 instances.) 

Example: Streaming data from IoT sensor devices, and batch processing data 

from a device settings database and combining these two. 

Reference Architecture 

 

Figure 5: Lambda Architecture 
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Note that this architecture does not use any Amazon EC2 instances for running clusters 

or distributed streaming or processing frameworks. In the batch layer, AWS Glue is 

used for serverless ETL and batch processing using Spark Jobs. Glue can be used to 

extract data from the Live Database, and for doing the Batch Layer processing for 

combining the Live Database data with the streaming data for complex pre-processed 

views. In the Speed Layer, streaming data is read in real time from Amazon Kinesis 

Data Firehose by Amazon Kinesis Data Analytics, where you can join the streaming 

data from a reference dataset in Amazon S3 (extracted from the Live Database). 

Amazon Kinesis Data Analytics is used here to join the data in real time, filter data or 

run machine learning anomaly detection algorithms, and persist the results in Amazon 

S3. Amazon S3 is used as the Serving Layer, and Amazon Athena and Amazon 

QuickSight are used to query the various processed data. 

1. Streaming data Producers: Data generated continuously may generate 

terabytes per day, and is collected and sent to Kinesis Data Streams or Kinesis 

Data Firehose.  

2. Batch layer: Using AWS Glue, you analyze the raw data from Amazon S3 in 

batch-oriented fashion to look at the datasets over time against the historical 

data, and store results back in Amazon S3. 

3. Speed layer: Using Amazon Kinesis Data Analytics, you analyze and filter the 

data to detect abnormalities in real time.  

4. Serving layer: Raw data, preprocessed views, and real-time filtered data is 

available in Amazon S3 for direct querying in the Serving layer. 

5. Amazon Athena provides serverless SQL queries on top of Amazon S3 to power 

visualizations, dashboards, and ad hoc queries.  

6. Finally, use Amazon Athena and Amazon QuickSight together to query and 

visualize the data and build a dashboard that can be shared with other users of 

Amazon QuickSight in your organization. 

Configuration notes: 

1. Leverage serverless compute and analytics services where possible. This 

removes the undifferentiated heavy lifting of managing distributed and clustered 

environments. In AWS, services like Kinesis Data Firehose, Amazon Kinesis 

Data Analytics, AWS Glue, Amazon S3, Athena, and QuickSight are fully 

managed and do not require patching, installation of software, back-ups, etc. 
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2. Leverage Amazon EMR for frameworks outside of the serverless scope. 

You may find your Speed Layer calculations are better suited in something like 

Apache Flink or Spark Streaming. You can use Amazon EMR for managing 

cluster environments for those applications. 

3. Determine the right data to combine at the right time. Not all use-cases 

demand the use of Lambda Architectures. Work backward from your business 

requirements for the speed and data freshness that is required for the views in 

the serving layer. 

4. Create pre-processed views for your end users. For some users, presenting 

access to raw streaming and master data can be complicated and overwhelming 

at best, and inefficient at worst (for example, SQL queries that select all columns 

without filtering). Creating pre-processed views (also known as materialized 

views in other domains) simplifies queries and also improves performance. You 

can align business expectations for freshness of the views. 

For more information and a hands-on tutorial on Lambda Architectures, see the 

following blog post: Unite Real-Time and Batch Analytics Using the Big Data Lambda 

Architecture, Without Servers! 

Data Science 

In a typical simplified data science workflow, data scientists perform an iterative process 

of model development by preparing data for machine learning, training their algorithms 

on a training dataset, evaluating algorithm performance against a separate validation 

dataset, refining their data preparation and algorithms for re-training, then packaging 

their algorithms into a production deployment framework. 

AWS provides several levels of abstraction for services used in machine learning. At the 

most abstract level, AWS AI services such as Amazon Polly, Amazon Lex, 

Comprehend, and Amazon Rekognition provide pre-trained API endpoints that can 

serve inferences against input data. In the middle tier of abstracted services, platform 

services such as Amazon Machine Learning, Amazon SageMaker, EMR with SparkML, 

and Mechanical Turk (for data labeling) are used to accelerate algorithm development 

without the heavy lifting required to self-manage underlying resources. Finally, the least 

abstracted tier of frameworks and infrastructure include the ability to spin up CPU-

optimized and GPU-optimized AWS Deep Learning AMIs with pre-configured popular 

frameworks such as TensorFlow, PyTorch, and Apache MXNet. The selection of which 

machine learning stack to use will depend on the business problem to be solved as well 

as development team knowledge and experience. 

https://aws.amazon.com/blogs/big-data/unite-real-time-and-batch-analytics-using-the-big-data-lambda-architecture-without-servers/
https://aws.amazon.com/blogs/big-data/unite-real-time-and-batch-analytics-using-the-big-data-lambda-architecture-without-servers/
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Data science algorithm development is beyond the scope of this document, however 

common scenarios for preparing, capturing, and utilizing big data for machine learning 

purposes is presented. 

In most business contexts, data is stored in a central repository or distributed across 

several repositories. This repository could be Amazon S3, a Hadoop framework such as 

EMR, a relational database such as RDS, a NoSQL database such as DynamoDB, a 

data warehouse, or a combination such as a Hive-compatible meta-store. However, the 

raw data collected during the course of business is rarely sufficient clean for machine 

learning applications. Most machine learning algorithms have strict requirements that 

data meet certain conditions, such as avoiding null values. Preparing data for machine 

learning is often the most time consuming portion of a data scientist's job. It is a best 

practice to develop robust and automated data pipelines to aggregate and transform the 

raw data a business collects into machine learning capable datasets. Further 

augmentation of the datasets is often advantageous to improve model performance, for 

example feature engineering by normalizing or combining columns of data, tokenizing a 

corpus of text, or pre-processing video into individual frames. 

On AWS, managed ETL services such as Glue jobs, EMR, or Data Pipeline reduce the 

heavy lifting of managing servers required to transform data as well as provide multi-

step orchestration of data transformation. By treating the AWS infrastructure as code 

and utilizing the AWS API endpoints for these services, data scientists can version 

control the development of their cleansing pipelines as well as document best practices 

for other data scientists. 

Staging, cleansing and feature engineering into sequential pipelines has advantages for 

hastening model development. More computation and memory are often required to 

cleanse and sample data from an extremely large raw dataset into a smaller clean 

dataset than is required to perform feature engineering on the smaller dataset itself. 

Follow the Well-Architected pillar of performance efficiency to utilize the appropriate 

instance types for the different stages of the pipeline. At the endpoint of the ETL 

cleansing pipeline it is a best practice for data scientists to store their cleansed data in a 

separate data store, such as Amazon S3. A separate data store for machine learning 

model development ensures data is consistent between model training runs, which 

provides a stable baseline for evaluating model improvement. Separating compute and 

storage is a best practice of the cost-optimization Well-Architected pillar. 

To solve business problems, the machine learning model will be deployed to serve 

inferences against new data. Another best practice is to track and improve model 

performance by augmenting the raw data store with additional labeled data specific to 

https://d1.awsstatic.com/whitepapers/architecture/AWS-Performance-Efficiency-Pillar.pdf
https://d1.awsstatic.com/whitepapers/architecture/AWS-Cost-Optimization-Pillar.pdf
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the machine learning context, known as data augmentation. This can be accomplished 

by recording the new data, the inference, and the “ground truth” of the actual data point. 

For example, whether or not the inferred “best” advertisement for a particular patron 

converted to a sale. The ground truth data is invaluable for measuring and improving 

model performance through retraining with the augmented data. In some cases, ground 

truth may not be known for some time, so implementing a tracking methodology that 

links inference to outcome should be considered. 

Characteristics 

• You want to use machine learning to solve a business problem 

• You have large amounts of data with relationships that are not easy to visualize 

using traditional warehouse tools 

• You want to identify relationships and trends in sparse datasets, for example 

recommending products 

• You want to make predictions based on historical data, for example predicting 

user churn 

• You want to improve a business function in real time, for example serving the 

most likely advertisement to convert a sale 

• You want to improve a business function in real time, for example predicting a 

part failure from sensor data 
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Reference Architecture 

 

Figure 6: Data Science Pipeline Reference Architecture 

1. Raw data store. Most frequently, the raw data store is a data lake where the data 

is ingested and housed. 

2. A data-cleansing pipeline converts raw data into machine-learning-ready 

datasets. 

3. Data used for training stored in another repository, for example written to 

Amazon S3, or an HDFS store, or metastore. 

4. ML model is developed using any number of frameworks, for example Amazon 

SageMaker, SparkML on EMR, GPU-instances running Deep Learning AMIs, R, 

Python, or Scala. 

5. ML model is packaged into a production endpoint. This often sits behind an API 

to make inferences. 
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6. In production, new data is served to the ML deployment. Inferences are used to 

solve business needs. 

7. Data capture during production deployment is saved and stored with the 

appropriate labels. This data is used periodically to re-train the model. 

Configuration notes 

• Machine Learning data often needs to be cleansed of missing fields, labeled, and 

features “engineered” to reduce or combine extraneous columns/features. 

Additionally, ML training often needs only a subset of the data available, so a 

down-sampling method is often chosen to speed model training and thereby 

shorten cycles of learning/refinement. 

• During model preparation, data consistency is important so model evaluation can 

be compared against previous versions. A training dataset and a “hold-out” or 

validation dataset may be stored separately for model training and evaluation, 

respectively. 

• For cost optimization of compute resources, select the right instance type for 

training and making inferences. For example, a GPU-optimized instance may 

speed training neural-network models, but a general-purpose instance is 

sufficient for serving API inferences from the NN model. 

• Utilizing fan-out resources such as Amazon SageMaker or SPOT market 

resources, multiple versions of the same model can be trained simultaneously 

with different tuning parameters, known as hyper-parameter optimization, vastly 

accelerating the development cycle. 

• Data Scientists often have their preferred method of developing models. 

Notebook-style IDEs such as Jupyter Notebook, Zeppelin, or R can present the 

IDE in the user's local browser, while commands are executed on remote 

resources within the AWS Cloud. 

• Try to avoid moving datasets frequently between the cloud and the data 

scientist's local workstation. A preferred pattern is to leave all data at rest in 

Amazon S3, load data as needed for development, retaining ETL pipelines. 

• Utilizing API Gateway, Amazon SageMaker, or ECS for deploying your models 

allows routing incoming traffic to different versions of the ML model, thus 

verifying performance in production before routing all traffic to the new version. 
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Multi-tenant Analytics  

Multi-tenant architectures allow organizations to share resources among multiple 

users/parties while providing controls to keep the tenants isolated and secure. In 

analytics, multi-tenant designs facilitate many use cases such as running workloads to 

support multiple departments on a data lake, testing multiple versions of an application 

and/or testing single application with different datasets allowing full utilization of the 

expensive cluster resources. In addition, multi-tenant design can be economical as the 

resources and associated maintenance costs will be shared by multiple tenants.  

Characteristics: 

Resource Isolation: In a multitenant environment, there should be a logical isolation of 

the resources consumed by each tenant. This ensures that a tenant’s analytic activities 

do not interfere or impede another tenant’s tasks. 

Data security: A tenant’s data assets can be housed on a variety of data stores. 

Segregate tenants’ data from each other by employing one of the two mechanisms – 1) 

separate schemas and/or databases for each of the tenants 2.) designing databases to 

be shared by multiple tenants with data partitioned via a column that represents a 

unique tenant identifier. Authentication, authorization and auditing methods should be 

implemented to ensure data security. 

Metered Usage: Tenants should only pay for the storage and processing they consume 

in a multi-tenant analytics environment. This often requires careful monitoring and 

measuring of various components and subsystems used by each tenant. 

Scalability: As new tenants are onboarded, the multi-tenant analytics environment 

should easily scale to meet higher processing and storage requirements. 
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Reference Architecture 

 

Figure 7: Reference architecture for multi-tenant analytics on AWS (silo mode) 
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Figure 8: Reference architecture for multi-tenant analytics on AWS (shared mode) 

There are two basic models that are commonly used when partitioning tenant usage 

and data in multi-tenant analytics architecture. Each partitioning model takes a very 

different approach to managing, accessing, and separating tenant data. 

Silo/dedicated model: Each tenant gets their own dedicated resource and the data is 

fully isolated from any other tenant data. All constructs that are used to represent the 

tenant’s data are considered logically “unique” to that client, meaning that each tenant 

will generally have a distinct representation, monitoring, management, and security 

footprint. 

1. Tenants - A data engineer, an analyst and a data scientist who all need 

resources to run their activities 

2. Each tenant launches their own clusters. A data engineer installs tools like Spark 

and Hive to manipulate and store the processed results in Amazon S3. An 

analyst might run tools such as Spark SQL and Presto to explore datasets and 

send the Query results to his own S3 bucket. And a data scientist might be using 

the EMR cluster to run ML or Deep Learning frameworks 
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3. Different authentication and isolation patterns based on the analytics tool of 

choice 

Shared/pool model: This is a true multi-tenant model where the tenants share all of the 

analytic system’s infrastructure constructs. Tenant data is placed into a common 

database and all tenants share a common representation (schema). This requires the 

introduction of a partitioning key that is used to scope and control access to tenant data. 

Analytics resources comprised of clusters are shared among the tenants using 

constructs like queues and work load management modules. This model tends to 

simplify a SaaS solution’s provisioning, management, and update experience. It also fits 

well with the continuous delivery and agility goals that are essential to SaaS providers. 

1. Tenants - A data engineer, an analyst and a data scientist who all need 

resources to run their activities 

2. A large multi-node cluster with all the tools and frameworks installed can support 

a variety of users. In addition, this infrastructure can also be used by end users 

who can launch edge nodes to run their data science platforms. Despite the cost 

effectiveness, sharing a cluster can be a cause for concern as a tenant might 

monopolize resources and cause the SLA to be missed for other tenants. For 

example, an analyst can issue long running query on Presto or Hive and much 

of the cluster resources. Or a data scientist might train a model over massive 

amounts of data 

3. Different authentication and isolation patterns based on the analytics tool of 

choice 

Configuration Notes: 

Architecting secure multi-tenant environment in analytics requires careful consideration 

on several fronts which includes 

• Authentication of tenants: A multi-tenant architecture requires managing 

identities belonging to different tenants. Users should be able to authenticate 

themselves to the analytics application using their AWS IAM or managed 

credentials. 

• Authorization to datasets: Once authenticated, users should only be able to 

access their own datasets. In multi-tenant analytics this means providing users 

with just enough privileges to access their data but not those of other tenants. 
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• Isolation of resources for tenants: In multi-tenant applications, each tenant is 

isolated from others through a well-defined partitioning strategy. Degree of 

isolation among tenants is determined by the chosen partitioning style - silo or 

shared.  

• Monitoring and metrics, centralized management of tenants and billing: For 

multi-tenant analytic designs, it is imperative to have a management layer to 

monitor the operations, metrics, performance and billing construct to efficiently 

manage tenants. 

The Pillars of the Well-Architected Framework 

This section describes each of the pillars, and includes definitions, best practices, 

questions, considerations, and key AWS services that are relevant when architecting 

solutions for analytics applications. 

For brevity, we have only included questions that are specific to analytics workloads. 

Questions that have not been included in this document should still be considered when 

designing your architecture. We recommend that you read the AWS Well-Architected 

Framework whitepaper. 

Operational Excellence Pillar 

The operational excellence pillar includes the ability to run and monitor systems to 

deliver business value and to continually improve supporting processes and 

procedures. 

Design Principles 

In the cloud, a number of principles drive operational excellence. The design principles 

from the AWS Well-Architected Framework whitepaper are recommended and do not 

vary for analytics workloads.  

Definition 

There are three best practice areas for operational excellence in the cloud: 

• Prepare 

• Operate 

• Evolve 
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In addition to what is covered by the Well-Architected Framework concerning 

processes, runbooks, and game days, there are specific areas you should look into to 

drive operational excellence within analytics applications. 

Best Practices 

Prepare 

To drive operational excellence in analytics workloads, you must understand your 

pipelines and their expected behaviors. You will then be able to design them to provide 

insight into their status and build procedures to support them. 

To prepare for operational excellence, you need to consider the following: 

• Operational priorities: Analytics teams typically have roles such as Data 

Engineer, Data Analyst, and Data Scientist. These teams need to have a shared 

understanding of the analytics pipelines, their role in it, and the shared business 

goals to set the priorities that will enable business success. You also need to 

consider external regulatory and compliance requirements for data assets and 

processing engines, which might influence your priorities and the choice of tools 

used in the pipeline. Use your priorities to focus your operations improvement 

efforts where they will have the greatest impact (for example, developing team 

skills, improving analytics application performance measuring techniques, 

automating and orchestrating batch and real-time pipelines, or enhancing 

monitoring). Update your priorities as needs change. 

• Design for operations: The design of your analytics pipeline should include how 

it is deployed, updated, and operated. Having a good CI/CD pipeline can help 

your organization discover bugs before they reach production and deliver 

updates more frequently. It can also help developers write quality code and 

automate the ETL job release management process, mitigate risk, and run 

operations in a more predictable fashion. In AWS, you can view your entire 

workload (that is, applications, infrastructure, policy, governance, and operations) 

as code. It can all be defined in and updated using code. This means you can 

apply the same engineering discipline that you use for application code to every 

element of your stack. 
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• Operational readiness: A successful implementation of an analytics pipeline 

involves many essential steps that take into account risks and benefits. Thorough 

planning that includes preserving raw data assets, creating runbooks that 

document pipeline activities and playbooks that guide your processes for issue 

resolution, monitoring and debugging capabilities are critical to being 

operationally ready. You should also test your procedures, failure scenarios, and 

the success of your responses (for example, by holding game days and testing 

prior to going live) to identify areas that you need to address. 

ANALYTICS_OPS 01: How do you select the most suitable analytics 
services and solutions? 

It’s important to classify your workload and choose the services that are best suited for 

your analytics applications. On AWS, there are many services available to simplify your 

analytics workloads in the cloud, whether your analytics use case falls under business 

intelligence, machine learning, NoSQL, and more.  

Select analytics services for your use cases based on operational criteria, such as 

speed/performance, batch/real time, interactive/automated, and self-

managed/serverless/AWS-managed. For example, for Apache Spark jobs focused on 

core ETL activities, AWS Glue simplifies your architecture by removing the burden of 

managing Apache Spark clusters. For highly customized workflows such as real time 

streaming using Kinesis Data Streams or for leveraging Amazon EC2 Spot Instances, 

Amazon EMR may be a more suitable service. Amazon Redshift and Redshift Spectrum 

are complementary and are very suitable for business intelligence and reporting queries 

that expand into your data lake in Amazon S3. 

ANALYTICS_OPS 02: How do you create and deploy your analytics 
pipeline? 

Implementing an analytics pipeline comprises services for acquiring datasets, high-

performance clusters for data manipulation, as well as services for the querying and 

visualization of data. As part of your preparation, you should automate the creation, 

configuration, and deployment of the services for seamless pipeline operations. You can 

pre-provision tooling and a clean environment using AWS CloudFormation. This allows 

you to not only provision the infrastructure using templates but also to carry out 

forensics in a safe, isolated environment. Organizations that transform their ETL 

applications to cloud-based, serverless ETL architectures benefit from a seamless, end-
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to-end continuous integration and continuous delivery (CI/CD) pipeline—from source 

code, to build, to deployment, and to product delivery. Having a CI/CD pipeline can help 

your organization discover bugs before they reach production and can deliver updates 

more frequently. It can also help developers write quality code, automate the ETL job 

release management process, mitigate risk, and more. 

Operate 

Operational success is the achievement of outcomes measured by the metrics you 

define. By understanding the operational health of your analytics application, you can 

identify when it’s impacted by operational events and respond appropriately. 

To operate successfully, you need to consider the following: 

• Understand operational health of the entire analytics pipeline  

• Responding to Events 

 

ANALYTICS_OPS 03: How do you monitor the health of the analytics 
pipeline? 

Your team must be able to easily understand the operational health of your analytics 

workload. Use metrics based on key-performance indicators (KPIs) and operational 

outcomes to gain useful insights. Use these metrics to implement dashboards with 

business and technical viewpoints that can help team members make informed 

decisions. On AWS, capabilities are available to help you bring together and analyze 

your workload and operations logs so that you can know your operating status and gain 

insight from operations over time. 

Many AWS managed services, such as Amazon RDS and Amazon Redshift, provide 

service-specific metrics that can be integrated into CloudWatch Dashboards. For 

example, by monitoring the average number of read and write operations per second on 

a data warehouse, you can determine usage patterns and scale your capacity 

accordingly. Metrics, including queue length/depth, are important and provide 

information about the number of queries or requests waiting to be processed by the 

data warehouse at any given time. 

Send log data from your clusters to Amazon CloudWatch Logs and define baseline 

metrics to establish normal operating patterns. Create Amazon CloudWatch dashboards 

that present system- and business-level views of your metrics. For processing 
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frameworks such as Amazon EMR, you should also install the Ganglia monitoring 

system, which is a scalable distributed monitoring system for high performance 

computing systems, such as clusters and grids.  

You can also ingest your CloudWatch Logs log data into Amazon Elasticsearch Service 

(Amazon ES) and then use the built-in support for Kibana to create dashboards and 

visualizations of your operational health (for example, order rates, connected users, and 

transaction times). In the AWS shared responsibility model, portions of monitoring are 

delivered to you through the AWS Service Health Dashboard (SHD) and the Personal 

Health Dashboard (PHD). These dashboards provide alerts and remediation guidance 

when AWS is experiencing events that might affect you. Customers with Business and 

Enterprise Support subscriptions also get access to the Amazon PHD API, enabling 

integration to their event management systems. AWS also has support for third-party 

log analysis systems and business intelligence tools through the AWS service APIs and 

SDKs (for example, Grafana, Kibana, and Logstash). Right-sizing capacity in your 

analytics pipeline should not be based on guess work—instead use operational metrics 

to make informed decisions.  

ANALYTICS_OPS 04: How do you manage operational events for your 

analytics application? 

An analytics pipeline consists of many moving parts across ingestion, storage, analysis, 

and visualization of your data. Failure in any of these individual layers of your data and 

analytics pipeline can have downstream impact on business critical applications that 

depend on your analytics layer. Ensuring that you have remediation steps in place for 

such events helps ensure business continuity and meeting your availability SLAs. 

Anticipate operational events, both planned (for example, sales promotions, 

deployments, and failure tests) and unplanned (for example, surges in utilization and 

component failures). 

Create and use runbooks and playbooks to avoid confusion and methodically respond 

to alerts consistently. Defined alerts must be owned by a role or a team that is 

accountable for the response and escalations. Understand the business impact of your 

system components and use this knowledge to prioritize efforts where needed. Perform 

a root cause analysis (RCA) after events, and then prevent the recurrence of failures 

and document workarounds. Know when a human decision is needed before an action 

is taken and, when possible, have that decision made before the action is required. You 

should have critical manual procedures available for use when automated procedures 

fail. 
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AWS simplifies your event response by providing tools supporting all aspects of your 

workload and operations programmatically. These tools allow you to script responses to 

operations events and trigger their execution in response to monitored data. In AWS, 

you can improve recovery time by replacing failed components with known good 

versions, rather than trying to repair them. There are multiple ways to automate the 

execution of runbook and playbook actions on AWS. 

To respond to an event from a state change in your AWS resources, or your own 

custom events, you should create CloudWatch rules to trigger responses through 

Amazon CloudWatch targets (for example, Lambda functions, Amazon Simple 

Notification Service (Amazon SNS) topics, Amazon Elastic Container Service (Amazon 

ECS) tasks, Step Functions, or AWS Systems Manager Automation). AWS also 

supports third-party systems through the AWS service APIs and SDKs. There are a 

number of tools provided by partners and third parties that allow for monitoring, 

notifications, and responses. Some of these tools include New Relic, Splunk, Loggly, 

SumoLogic, and Datadog. 

ANALYTICS_OPS 05: How are you evolving your data and analytics 

workload while minimizing the impact of change? 

As new technologies are introduced, it is common for organizations to upgrade their 

data and analytics stack to newer versions or replace a service for ingestion, 

processing, or visualization with a managed or serverless alternative. Decoupling 

storage from the compute layer for data assets, using an external metadata store, and 

using versioned configuration artifacts in Amazon S3 buckets enable you to upgrade 

and re-launch clusters and resume processing.  

If you need more fine-grained control over configuration within analytics shared across 

multiple applications functions, consider the AWS Systems Manager Parameter Store 

feature over environment variables. Use AWS Secrets Manager to store database 

credentials and other “secrets” so you can easily rotate, manage, and retrieve the 

secrets and credentials from your analytics application code. 

Evolve 

See the Well-Architected Framework whitepaper for best practices in the evolve area 

for operational excellence that apply to analytics applications. 
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Resources 

Refer to the following resources to learn more about our best practices for operational 

excellence. 

Documentation & Blogs 

• Orchestrate multiple ETL jobs using AWS Step Functions and AWS Lambda 

• Implementing continuous integration and delivery of serverless AWS Glue ETL 

Applications using AWS Developer Tools 

• Implementing Dynamic ETL Pipelines Using AWS Step Functions 

• The Right Way to Store Secrets using Parameter Store 

• Tutorial - Storing and Retrieving secrets 

Whitepapers 

• Operational Excellence Pillar 

Videos 

• Walking the Tightrope: Balancing Innovation, Reliability, Security 

• A Day in the Life of a Netflix Engineer III 

Security Pillar 

The security pillar includes the ability to protect information, systems, and assets while 

delivering business value through risk assessments and mitigation strategies. 

Definition 

There are five best practice areas for security in the cloud: 

• Identity and access management 

• Detective controls 

• Infrastructure protection 

• Data protection 

• Incident response 

https://aws.amazon.com/blogs/big-data/orchestrate-multiple-etl-jobs-using-aws-step-functions-and-aws-lambda/
https://aws.amazon.com/blogs/big-data/implement-continuous-integration-and-delivery-of-serverless-aws-glue-etl-applications-using-aws-developer-tools/
https://aws.amazon.com/blogs/big-data/implement-continuous-integration-and-delivery-of-serverless-aws-glue-etl-applications-using-aws-developer-tools/
https://aws.amazon.com/blogs/compute/implementing-dynamic-etl-pipelines-using-aws-step-functions/
https://aws.amazon.com/blogs/mt/the-right-way-to-store-secrets-using-parameter-store/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/tutorials_basic.html
https://d0.awsstatic.com/whitepapers/architecture/AWS-Operational-Excellence-Pillar.pdf
https://www.youtube.com/watch?v=00awAtGTyJ0
https://www.youtube.com/watch?v=T_D1G42G0dE
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Managed services address some of today’s biggest security concerns with analytics 

applications environments, as they minimize certain forms of infrastructure management 

tasks, such as operating system patching, binary patching, etc. Although the attack 

surface is reduced compared to non-managed analytics application architectures, Open 

Web Application Security Project (OWASP) recommendations and application security 

best practices still apply. 

The questions in this section are designed to help you address specific ways an 

attacker could try to gain access to or exploit misconfigured permissions that could lead 

to abuse. The practices described in this section strongly influence the security of your 

entire cloud platform and so should not only be validated carefully but also reviewed 

frequently. 

The infrastructure protection best practice area will not be described in this document 

because the practices from the AWS Well-Architected Framework still apply. 

Design Principles: 

In the cloud, there are a number of principles that help you strengthen your system’s 

security. In particular, the following is emphasized for analytics workloads. See also the 

design principles in the AWS Well-Architected Framework whitepaper. 

• Enable data traceability: Monitor, alert, and audit actions and changes to the 

lineage of data in your environment in real time. Integrate metrics with systems to 

automatically respond and take action. 

Best Practices 

Identity and Access Management 

Identity and access management are key parts of an information security program, 

ensuring that only authorized and authenticated users are able to access your 

resources, and only in a manner that you intend. For example, you should define 

principals (that is, users, groups, services, and roles that take action in your account), 

build out policies aligned with these principals, and implement strong credential 

management. These privilege-management elements form the core of authentication 

and authorization. Analytics applications often require multiple interdependent services 

with differing access patterns and methods, so it’s also important to appropriately scope 

the service-level inherited access those services provide throughout your environment. 
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ANALYTICS_SEC 1: How do you authenticate access to your analytics 
applications within your organization? 

Authentication is the process of an entity (a user or application) proving its identity to an 

application or system. Big data services within AWS offer multiple authentication 

mechanisms and you can choose the authentication mechanism that best fits your 

organization. 

AWS Identity and Access Management (IAM) supports federating authentication with 

Active Directory or other directory services using LDAP. Many large organizations 

implement a federated authentication mechanism. IAM roles are assumed by the 

federated user, which then provide authentication to downstream services. For 

example, in Amazon Redshift, IAM roles can be mapped to Amazon Redshift DB 

Groups, Amazon EMR IAM roles can be mapped to an EMR Security configuration or 

Apache Range AD group-based policy, and in AWS Glue, IAM roles can be mapped to 

Glue catalog resource policies. 

Here are some authentication options for each service. Refer to the service-specific 

documentation for more details: 

Service Authentication Options 

AWS Lake Formation IAM authentication, Lake Formation permissions for Data 

Catalog access 

Amazon Athena IAM authentication, SSH Keys for JDBC connections, 

Federated identity, cross-account, EC2 instance profile 

Amazon Redshift IAM Authentication, Native database authentication 

Amazon EMR IAM Authentication, LDAP Authentication (for HiveServer2, 

Hue, Presto, Zeppelin), Kerberos authentication, SSH Keys, 

Apache Knox 

ANALYTICS_SEC 2: How do you authorize access to the analytics 
services within your organization? 

Authorization is the act of allowing or denying an identity to perform an action. This 

requires authentication first, as determining what an identity can do requires that the 

https://docs.aws.amazon.com/lake-formation/latest/dg/access-control-overview.html
https://docs.aws.amazon.com/athena/latest/ug/security.html
https://docs.aws.amazon.com/athena/latest/ug/access-federation-saml.html
https://docs.aws.amazon.com/redshift/latest/dg/r_Database_objects.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-access-iam.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos-principals.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-access-ssh.html
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identity has been validated. Authorization for data can be broken up into storage 

authorization, metadata authorization and application authorization. 

Analytics services and applications are often shared among teams within an 

organization. How you decide to organize authorization to services depends on whether 

you pursue a “fine-grained” or “coarse-grained” approach to user segmentation. With a 

fine-grained approach, teams share AWS account access with common resources, 

such as a large Amazon Redshift cluster owned by the organization, while individual 

databases are authorized by team at the IAM policy level. In contrast, the coarse-

grained approach segments authorization by team, and each team maintains control of 

their individual accounts and all resources required for their job function within their 

account. Coarse-grained collaboration access is provided via cross-account roles that 

can be assumed by other teams. In this approach, for example, the “data lake team” 

maintains control of S3 buckets in one account, while the “data engineering team” uses 

the AWS Glue service in a separate account, where AWS Glue is authorized via cross-

account roles with read-only access to read from the S3 data lake. The coarse-grained 

approach is preferred by Amazon to ease security management within organizations 

with a large number of users. 

Here are some storage authorization options for each service. Refer to the service-

specific documentation for more details: 

Service Storage Authorization Options 

Amazon S3 S3 bucket policies and ACLs allow defining fine grained 

permission on S3 objects 

Amazon EMR Use EMRFS authorization for datasets in Amazon S3 via 

Security Configuration in the Amazon EMR service. 

Enable “Secure Mode” in Hadoop. Use Hadoop ACLs. 

Metadata Authorization rules are the access-control rules you specify at the catalog or 

metadata level that store the definitions of tables, views, etc. Here are some metadata 

authorization options for each service. Refer to the service-specific documentation for 

more details: 

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/set-permissions.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/set-permissions.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/SecureMode.html
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Service Metadata Authorization Options 

Apache Hive on Amazon EMR SQL Standard-Based Hive Authorization, 

Apache Ranger on EC2 can be used for fine-grained 

access control (limited to Apache Hive) 

Amazon Redshift SQL Standard-Based Authorization using grants to users 

and groups. 

AWS Glue Allows attaching fine-grained access control policies to 

catalog items 

Application Authorization rules are the rules that define what actions each user can 

perform on the resources for each service, for example, run a Glue Crawler, run a Glue 

ETL job, launch or terminate EMR Clusters, etc. Application Authorization Rules are 

defined in IAM across services. Here are some application authorization options for 

each service. Refer to the service-specific documentation for more details: 

Service Application Authorization Options 

Amazon Redshift IAM policies define who can list, read, create and manage 

Amazon Redshift resources. 

AWS Glue IAM policies define who can read and modify Glue resources 

like Crawlers, Jobs etc. 

Amazon EMR IAM policies define who can list and modify Amazon EMR 

clusters 

Amazon Athena IAM policies assigned to the user define who can read, run 

query etc. in Amazon Athena 

Amazon Kinesis IAM policies assigned to the user define who can create, 

modify Amazon Kinesis Streams, Amazon Kinesis Data 

Firehose Delivery Streams, etc. 

Amazon QuickSight IAM Policies assigned to user define who is an Amazon 

QuickSight administrator or author or reader. 

https://aws.amazon.com/blogs/big-data/implementing-authorization-and-auditing-using-apache-ranger-on-amazon-emr/
https://docs.aws.amazon.com/athena/latest/ug/fine-grained-access-to-glue-resources.html
https://docs.aws.amazon.com/athena/latest/ug/fine-grained-access-to-glue-resources.html
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Detective controls 

ANALYTICS_SEC 3: How are you storing, monitoring and analyzing 
access and query logs? 

It’s important to monitor and analyze data access and query logs. A common practice in 

large organizations is to use a central log management service, like Elasticsearch with 

Kibana to store and analyze log files. Amazon S3 is the best choice for long-term 

retention and archiving of log data, allowing easy search and discovery using Amazon 

Athena. VPC Flow Logs enable you to monitor connections to and between services 

used in your analytics application. 

Here is a list of how common AWS services used in an analytics application store 

access and query logs. Refer to the service-specific documentation for more details: 

Service Log Storage Options 

Amazon Athena Stores query requests in CloudTrail, Query results stored in 

Amazon S3 

Amazon S3 Buckets can be enabled to store access logs 

Amazon Redshift Audit Logging can be enabled 

Amazon EMR Stores logs in Amazon S3. Custom Query logs for Presto, Hive 

etc. can be saved to Elasticsearch, Amazon S3, etc., using 

log4j appenders. 

AWS Glue Stores logs in Amazon CloudWatch 

Infrastructure protection 

See the Well-Architected Framework whitepaper for best practices in the infrastructure 

protection area for security that apply to analytics applications. 

Data Protection 

Before architecting any analytics system, foundational practices that influence security 

should be in place. For example, data classification provides a way to categorize 
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organizational data based on levels of sensitivity, and encryption protects data by way 

of rendering it unintelligible to unauthorized access. These methods are important 

because they support objectives such as preventing financial loss or complying with 

regulatory obligations. 

ANALYTICS_SEC 4: How are you securing data at rest? 

Ensuring sensitive data is encrypted at rest is paramount to creating and maintaining a 

proper security posture. Analyze security and compliance requirements for your 

analytics application to determine how to encrypt your data at rest. When encrypting 

your data, design a proper key rotation policy. Equally important, use a key 

management system to ensure that you encrypt and decrypt your data in the proper 

way. For key management, use an external key management system or a hardware 

security module (HSM) to ensure that there is no unauthorized access to those keys. 

Keeping appropriate ration policy is also important to ensure the keys are not 

compromised. 

Encrypting data within AWS starts by defining an encryption key management strategy. 

Questions to answer are: Do I have to manage my encryption keys?”, “Do I need 

dedicated key management hardware?”, and “Do I have to manage my keys on 

premises?” The following chart can help you choose the best solution for key 

management for your data at rest. 

Do I have to 

manage my 

encryption 

keys? 

Do I need 

dedicated key 

management 

hardware? 

Do I have to 

manage my keys 

on premises? 

 

Strategy 

 

 

No No No Use AWS service managed 

Yes No No Use AWS KMS 

Yes Yes No Use AWS CloudHSM 

Yes No Yes Use your own KMS 

Yes Yes Yes Use your own HSM 

Amazon S3 allows both server-side encryption (SSE) as well as client-side encryption 

(CSE) for protecting data at rest. For SSE, three mutually exclusive options are 

available: Server-side encryption with Amazon S3-managed keys (SSE-S3), Server-

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html
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side encryption with AWS KMS-managed keys (SSE-KMS), and Server-side encryption 

with customer-provided keys (SSE-C). For CSE, you have the following options: Use an 

AWS KMS-managed customer master key, or use a client-side master key. 

Amazon EMR encryption of data at rest is configured with a managed “Security 

Configuration” object. This configuration file will configure EMRFS and local-volume 

encryption at rest. If needed, configure HDFS transparent encryption. 

Amazon Redshift can configure encryption by selecting the “Encrypt database” option. 

Selecting this option will ensure encryption of data at rest as well as encryption of 

backups. Options for the key management store are AWS KMS and HSM. 

AWS Glue supports data encryption at rest for ETL jobs and development endpoints. 

You can configure ETL jobs and development endpoints to use AWS Key Management 

Service (KMS) keys to write encrypted data at rest. You can also encrypt the metadata 

stored in the Glue Data Catalog using keys that you manage with AWS KMS. 

Additionally, you can use AWS KMS keys to encrypt job bookmarks and the logs 

generated by crawlers and ETL jobs. Encryption settings for crawlers, ETL jobs, and 

development endpoints can be configured using the security configurations in Glue. 

Glue Data Catalog encryption can be enabled via the settings for the Glue Data 

Catalog.  

ANALYTICS_SEC 5: How are you securing data in transit? 

Data security is also required for data in transit. Here are some options for encrypting 

data in transit for common AWS services used in analytics application. Refer to the 

service-specific documentation for more details: 

Point “A” Point “B” Data Flow Protection 

Enterprise data sources Amazon S3 Encrypted with SSL/TLS; S3 

requests signed with AWS Sigv4 

Amazon S3 Amazon EMR 

Amazon Redshift 

Amazon Athena 

Encrypted with SSL/TLS 

Amazon Athena Clients JDBC connections use SSL/TLS 

by default 

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption-options.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
https://docs.aws.amazon.com/glue/latest/dg/encryption-at-rest.html
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Point “A” Point “B” Data Flow Protection 

Amazon EMR Clients Encrypted with SSL/TLS; varies 

with Hadoop application client 

Amazon Redshift Clients Supports SSL/TLS; Requires 

configuration 

Apache Hadoop on 

Amazon EMR 

 ● Hadoop RPC encryption 

● HDFS block data transfer 

encryption 

● KMS over HTTPS is not 

enabled by default with 

Hadoop KMS 

May vary with Amazon EMR 

release (such as Tez and Spark 

in release 5.0.0+) 
ANALYTICS_SEC 6: How are you protecting sensitive data within your 
organization? 

Sensitive data is data that must be protected from visibility—even within your 

organization. Examples of sensitive data are those that have a high potential for abuse 

or fraud and includes financial information, like credit card numbers, personally-

identifying information, like government ID numbers, and those records required by law 

to maintain tighter access controls. When designing an analytics workflow, understand 

how and where sensitive information is being processed and take measures to protect 

it.  

Before sensitive data can be protected, it must first be identified as sensitive data. 

Amazon Macie is a security service that uses machine learning to automatically 

discover, classify, and protect sensitive data in AWS. Amazon Macie recognizes 

sensitive, data such as personally identifiable information (PII) or intellectual property, 

and provides you with dashboards and alerts that give you visibility into how this data is 

being accessed or moved. 

Data stored in Amazon S3 can be tagged with designations to indicate the sensitivity, 

and the type of sensitive data that is present. Access to that sensitive data can be 

limited using IAM policies that contain Condition clauses. Amazon Athena uses 

permissions granted from the storage layer, so by controlling access to data in Amazon 

S3, you can restrict users from querying it using Athena. Similarly, sensitive data access 

in Amazon EMR and Athena can be restricted using tags and IAM policies. Sensitive 

https://aws.amazon.com/macie/
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazons3.html#amazons3-policy-keys
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data in Amazon Redshift can be restricted by creating views that do not contain 

sensitive data columns, and only allowing access to users to those non-sensitive views. 

Explicitly denying permission for tagging actions is an important consideration. This 

prevents users from granting permissions to themselves that you did not intend to grant 

through tags. 

Incident Response 

Even with extremely mature preventive and detective controls, your organization should 

still put processes in place to respond to and mitigate the potential impact of security 

incidents. The architecture of your workload strongly affects the ability of your teams to 

operate effectively during an incident, to isolate or contain systems, and to restore 

operations to a known good state. Putting in place the tools and access ahead of a 

security incident, then routinely practicing incident response through game days, will 

help you ensure that your architecture can accommodate timely investigation and 

recovery. For further recommendations on incident response, see the AWS Well-

Architected Framework Security Pillar whitepaper. 

ANALYTICS_SEC 7: How are you defining and enforcing policies to 
respond to security alerts and incidents? 

It's critical to respond to security alerts and events related to your analytical applications 

within a pre-defined and accepted SLA. Data is your most important asset and if there is 

a breach in the security of your analytics infrastructure, your entire data asset could be 

compromised if the breach is not contained in a timely manner. Hence, it’s important to 

proactively identify these events and remediate them as soon as possible. For example, 

it’s important to scan for sensitive information, like authentication keys and passwords 

to your databases, being embedded within public or private code repositories that could 

compromise access to those databases. Moreover, if you notice unusual access 

patterns in a given time period from your data stores, you should investigate it in an 

urgent and timely manner. Every organization is different and it’s important to work 

closely with your security and compliance teams to decide on the appropriate SLAs for 

each of the security-related events. 

AWS provides multiple services to define, enforce, and respond to security alerts and 

incidents. AWS CloudTrail is a service that enables governance, compliance, 

operational auditing, and risk auditing of your AWS account. With CloudTrail, you can 

log, continuously monitor, and retain account activity related to actions across your 

AWS infrastructure. Amazon Macie is a security service that makes it easy for you to 
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discover, classify, and protect sensitive data in Amazon S3. Macie collects AWS 

CloudTrail events and Amazon S3 metadata such as permissions and content 

classification. Amazon GuardDuty is a managed threat detection service that 

continuously monitors for malicious or unauthorized behavior to help protect your AWS 

accounts and workloads. Amazon GuardDuty gives you intelligent threat detection by 

collecting, analyzing, and correlating billions of events from AWS CloudTrail, Amazon 

VPC Flow Logs, and DNS Logs across all of your associated AWS accounts. 

Resources 

Refer to the following resources to learn more about our best practices for operational 

excellence. 

Documentation & Blogs 

• Connect to Amazon Athena with federated identities using temporary credentials 

• Best Practices for Securing Amazon EMR 

• IAM Policies and Bucket Policies and ACLs! Oh, My! (Controlling Access to S3 

Resources) 

• Security, Protecting and Managing Data 

• Video: Securing Enterprise Big Data Workloads on AWS 

• Video: Best Practices to Secure Data Lake on AWS 

Whitepapers 

• Amazon Web Services: Overview of Security Processes 

• Big Data Analytics Options 

• Security Pillar: AWS Well-Architected Framework 

Partner Solutions 

● AWS Big Data Partner solutions 

Third-Party Tools 

• Lumada Data Catalog 

• Collibra 

• Okera 

https://aws.amazon.com/blogs/big-data/connect-to-amazon-athena-with-federated-identities-using-temporary-credentials/
https://aws.amazon.com/blogs/big-data/best-practices-for-securing-amazon-emr/
https://aws.amazon.com/blogs/security/iam-policies-and-bucket-policies-and-acls-oh-my-controlling-access-to-s3-resources/
https://aws.amazon.com/blogs/security/iam-policies-and-bucket-policies-and-acls-oh-my-controlling-access-to-s3-resources/
https://docs.aws.amazon.com/aws-technical-content/latest/building-data-lakes/securing-protecting-managing-data.html
https://www.youtube.com/watch?v=WOz707HK_Kw
https://www.youtube.com/watch?v=U8Z_pfMRnBA
https://d1.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://d1.awsstatic.com/whitepapers/Big_Data_Analytics_Options_on_AWS.pdf
https://d1.awsstatic.com/whitepapers/architecture/AWS-Security-Pillar.pdf
https://aws.amazon.com/big-data/featured-partner-solutions/
https://www.hitachivantara.com/en-us/products/data-management-analytics/lumada-data-services/lumada-data-catalog.html?source=waterline
https://www.collibra.com/
https://www.okera.com/
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• Apache Atlas 

• Apache Knox 

• Apache Ranger 

Reliability Pillar 

The reliability pillar includes the ability of a system to recover from infrastructure or 

service disruptions, dynamically acquire computing resources to meet demand, and 

mitigate disruptions such as misconfigurations or transient network issues. 

Definition 

There are three best practice areas for reliability in the cloud: 

• Foundations 

• Change management 

• Failure management 

To achieve reliability, a system must have a well-planned foundation and monitoring in 

place, with mechanisms for handling changes in demand, requirements, or mitigating 

the risk of data store failure. The system should be designed to detect failure and, 

ideally, automatically heal itself. 

Design Principles 

In the cloud, a number of principles help you increase reliability. In particular, the 

following are emphasized for analytics workloads. For more information, refer to the 

design principles in the AWS Well-Architected Framework whitepaper. 

• Manage the lifecycle of data assets, transitioning and expiration: Apply a 

governance process to how datasets and assets are maintained. Establish a 

review cycle on the relevance and freshness of a dataset. Ensure that 

operational maintenance cycles on managed datasets are being maintained. 

Such governance can include how data is updated or refreshed, institutional 

input tracking on data value and use, and criteria and process for data expiration 

including the use of tiered storage for cost management of data. 

https://atlas.apache.org/
https://knox.apache.org/
https://ranger.apache.org/
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• Enforce Data Hygiene: When managing datasets for institutional use, apply 

mechanisms to assure data model standards are defined and enforced. Every 

dataset being used within an institutional workload should have a governance 

model applied to it with a repository that records its control, access, cleanliness 

standard, usage lineage, and overall management 

• Preserve data lineage: Derived datasets are mutable; original data is not. The 

process of ingesting data into a data lake begins with the unmodified original 

“raw” data from which all downstream processes and manipulations derive. This 

raw dataset may undergo multiple transformations before it can be used by 

downstream analytical applications. It's important to maintain traceability of data 

attributes as the data moves through each layer of the analytical system with 

data lineage capture. A metadata repository that maps and tracks the schema 

changes can be used to capture such lineage information. 

Best Practices 

Foundations 

See the Well-Architected Framework whitepaper for best practices in the foundations 

area for reliability that apply to analytics applications. 

Change Management 

ANALYTICS_REL 1: How do you track changes to the metadata in your 
data warehouse? 

You should have a centralized metadata repository to track changes in the source and 

target. There should be a convenient path to propagate those changes to downstream 

systems that depend on the source and target systems. For example, if a column in the 

source table changes, the ETL job that reads the column should be modified to read 

from the modified column and any metric calculation in the reporting system that 

depends of the column should be modified.  

It’s also essential to have the ability to track how the value of a target metric is 

calculated from the source as the data traverses multiple layers of the data warehouse. 

This helps in debugging any errors in the value of the metrics. The system should have 

the capability to provide an audit trail of changes to the metadata over a period of time. 

On AWS, use the Glue Data Catalog to maintain a repository of metadata for source 

and target systems. The Glue Data Catalog also integrates with other AWS services 
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including Athena and EMR so that you can maintain consistency between the query 

environments and ETL environments. For example, the file that is loaded into Amazon 

S3 using a Glue ETL job can be a part of the Glue Data Catalog, which is shared with 

Athena so it can be seamlessly queried without a need to move the file into a different 

service. The Glue Data Catalog can also be used as a Hive metastore running on 

Amazon EMR.  

ANALYTICS_REL 2: How do you maintain the configuration settings of 
your analytics environment to ensure consistency across versions? 

Maintain the configuration parameters and environment as code by templatizing 

resources including databases, Hadoop clusters, and query tools. This allows for easy 

setup and consistent deployment of the big data environment.  

Tracking changes to the configuration using a code repository enables you to track 

changes in the environment and also to roll back to an earlier version of the 

environment in case there are issues with the configuration changes.  

AWS Config allows you to track changes in the configurations of AWS services. In 

addition, you can maintain consistency between various big data environments by using 

CloudFormation, which enables you to easily manage the infrastructure for AWS 

resource provisioning and updates. You can also use AWS OpsWorks, which is a Chef-

based configuration and automation service. 

Failure Management 

ANALYTICS_REL 3: How do you recover from failures in your primary 
data warehouse? 

Downtime in a primary data warehouse can be catastrophic for a business. The data 

warehouse powers the downstream analytical applications, some of them mission 

critical, and a proper recovery strategy needs to be in place so that it can recover from 

failures in a timely manner, consistent with the organization’s recovery time objective 

(RTO) and recovery point objective (RPO). 

AWS provides you with the opportunity to design fault tolerant architectures when it 

comes to databases. For example, Amazon Redshift in a multi-node cluster 

continuously monitors itself for node failures and in the event of a failure, automatically 

creates a copy of the data and replicates it on a healthy node, while ensuring that the 

queries are served. Amazon RDS has Cross-Region Replication and Multi-AZ 
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deployment options that allow you to maintain a synchronous copy of the database in 

another Availability Zone while ensuring read performance. RDS and Amazon Redshift 

support automated snapshots to durable object storage should the data warehouse 

need to be recovered from a catastrophic failure.  

ANALYTICS_REL 4: How do you recover from failures of your ETL jobs? 

ETL jobs allow data to be ingested from multiple disparate source systems, transformed 

for downstream consumption and loaded into a data mart for reporting. An ETL job can 

be a batch or stream workload, depending on the velocity of data ingestion. Moreover, 

ETL job starts can be schedule-based or event-based. A failure in the ETL step could 

result in outdated or incorrect metrics in your analytical application. It is essential to 

ensure that the ETL jobs continue to run and can recover in case of failures. 

AWS Glue is a serverless service that allows you to run batch ETL jobs without the 

need for maintaining servers. This reduces the chances of failures in the batch ETL job 

considerably. Similarly, Amazon Kinesis Data Streams and Amazon Kinesis Data 

Firehose are serverless stream processing services that reduce the risk of failures in 

stream-based ETL. AWS Lambda is a service that allows you to run code without 

worrying about servers. It can be used to process small event-based or schedule-based 

ETL logic or can also be used as a trigger for longer running batch ETL jobs. 

Resources 

Refer to the following resources to learn more about our best practices for operational 

excellence. 

Documentation & Blogs 

• AWS Glue - Running and Monitoring AWS Glue 

• Amazon EMR – View and Monitor a Cluster 

• Monitoring the Amazon Kinesis Data Streams Service with Amazon CloudWatch 

 

Whitepapers 

• Reliability Pillar 

https://docs.aws.amazon.com/glue/latest/dg/monitor-glue.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-glue.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-manage-view.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-manage-view.html
https://docs.aws.amazon.com/streams/latest/dev/monitoring-with-cloudwatch.html
https://docs.aws.amazon.com/streams/latest/dev/monitoring-with-cloudwatch.html
https://d1.awsstatic.com/whitepapers/architecture/AWS-Reliability-Pillar.pdf
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Performance Efficiency Pillar 

The performance efficiency pillar focuses on the efficient use of computing resources to 

meet requirements and the maintenance of that efficiency as demand changes and 

technologies evolve. 

Definition 

Performance efficiency in the cloud is composed of four areas: 

• Selection 

• Review 

• Monitoring 

• Tradeoffs 

Take a data-driven approach to selecting a high-performance architecture. Gather data 

on all aspects of the architecture, from the high-level design to the selection and 

configuration of resource types. By reviewing your choices on a recurring basis, you can 

ensure that you are taking advantage of the continually evolving AWS Cloud. Monitoring 

ensures that you are aware of any deviance from expected performance and can take 

action on it. Finally, you can make tradeoffs in your architecture to improve 

performance, such as using compression or caching, or relaxing consistency 

requirements. 

The review and trade-offs best practice areas will not be described in this document 

because the practices from the AWS Well-Architected Framework still apply. 

Design Principles 

When designing for analytics workloads in the cloud, a number of principles help you 

achieve performance efficiency: 

• Use data profiling to improve performance. Store prepared data in an 

appropriate environment based on data access and query retrieval patterns. Use 

business and application requirements to define performance and cost 

optimization goals. Published data should have service design goals (such as 

data refresh rate.) Included in a data profile are data statistics (sums, averages), 

column skew (disproportional frequency of a value), and missing data. These 

characteristics of the data profile can affect query performance and partitioning 

strategies, and should be monitored. 
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• Continuously optimize data storage. Data storage optimization—especially 

compression, partitioning columns, distribution keys, and sort keys—need to be 

continuously evaluated and improved as query patterns change. 

Best Practices 

Selection 

ANALYTICS_PERF 01: How do you select file formats and compression 
to store your data? 

In many analytics applications, the data loading performance is the bottleneck to data 

processing. By compressing data at rest, and utilizing AWS services that can read 

compressed data formats, you can lower the cost for storage, as well as improve 

performance by reducing the data scanned by queries. Using a storage format that 

allows partitioning data can further reduce the amount of data scanned, improving 

performance efficiency. 

There are a variety of storage options related to big data processing in Amazon S3. You 

have the option of storing data in open formats, such as delimited text (for example, 

CSV), ORC, Parquet, Avro, and SequenceFile. You might also choose to compress the 

data as GZIP, BZIP, LZO, Snappy, and more. Each of these formats and compression 

algorithms provides characteristics that can optimize your workload for performance as 

well as storage and query costs. 

Analytics applications using frameworks running on Amazon EMR, Athena, AWS Glue, 

and Redshift Spectrum benefit from columnar formats and compression for data storage 

in Amazon S3. Amazon Redshift storage also presents options for compressed storage. 

Amazon Redshift column compression and encoding can improve query performance. 

Compression also reduces your storage footprint, therefore reducing your Amazon 

Redshift cost. Use splittable compression where possible, as it allows workers running 

in parallel to read and work on different chunks of data from a single object. 

Use columnar formats where possible. Columnar formats improve performance by 

reducing the data scanned. When you query data, you are commonly only retrieving a 

few columns out of what could be hundreds of columns. Columnar file formats allow big 

data processing engines to retrieve only the data from columns that are requested. 
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ANALYTICS_PERF 02: How do you determine compute options and 
sizing for your analytics applications? 

Run performance tests specific to each workload to determine the sizing of your 

architecture and any bottlenecks, and to ensure that you can meet target SLAs for data 

loading, processing, and freshness.  

Analytics services on AWS offer a large number of compute options optimized for CPU, 

GPU, memory, and storage. Selecting suitable instance counts and instance types for 

your big data applications can potentially provide performance improvements and cost 

savings. For example, many analytics workloads are time sensitive to meet business 

operations reporting requirements. Performance metrics should be examined in the 

context of the overall analytics workload end-to-end completion time, while monitoring 

individual steps in the analytics pipeline. 

Monitor your application resources, such as EC2 instances, EMR clusters, RDS 

instances, Amazon Redshift clusters, ElastiCache, and AWS Glue to ensure that you 

are meeting performance objectives without being over- or under-provisioned.  

ANALYTICS_PERF 03: How do you organize or partition your data in your 
data lake? 

By partitioning your data, you can reduce the amount of data scanned by each query, 

thus improving performance and reducing cost.  

Monitor user query behavior to find columns frequently used in filters and “group by” 

statements. You can select these columns for partitioning for best results. You can 

partition your data by any column. A common practice is to partition the data based on 

time, often leading to a multi-level partitioning scheme. For example, if you have data 

coming in every hour, you might decide to partition by year, month, day, and hour. If you 

have data coming from many different sources but loaded only one time per day, you 

might partition by a data source identifier and date. If you have multiple business groups 

or customers querying the data, you might also consider partitioning by business group 

ID or customer ID columns in your data. 

Avoid over-partitioning, as it can lead to added overhead and smaller files in your S3 

buckets, which can be detrimental to performance. Referring to the example of 

partitioning by year, month, day, and hour,  this partitioning scheme might be too coarse 
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if most queries are filtering on year. Partitioning is use-case dependent and might even 

be fluid in your organization, as one size may not fit all use cases. 

Review 

See the Well-Architected Framework whitepaper for best practices in the review area for 

performance efficiency that apply to analytics applications. 

Monitoring 

ANALYTICS_PERF 04: How are you monitoring the performance of data 
ingestion, batch jobs, and ETL jobs? 

Monitoring analytics applications ensures that you are using empirical data to determine 

horizontal scale-out strategies, compute selection, and that actively manage service 

limits that may impact your performance. 

Ingestion Monitoring 

AWS provides services such as Kinesis Data Streams and Kinesis Data Firehose, AWS 

Database Migration Service (AWS DMS), and AWS Glue to simplify your large-scale 

data ingestion. You can also develop your own ingestion applications using frameworks 

on Amazon EMR or Amazon EC2. Like other applications and infrastructure, these 

services should be monitored to ensure they are being scaled appropriately.  

For example, Kinesis Data Streams should be monitored at the stream and shard level 

to ensure appropriate resharding takes place, and that you are scaling the Kinesis 

producer and consumer applications to keep up with demand. Glue ETL Jobs should be 

monitoring for Data Processing Unit (DPU) memory and CPU consumption to ensure 

you have enough DPUs for jobs to succeed in an efficient time-frame. AWS DMS offers 

continuous change data capture replication, in which case you must select DMS 

Replication instance types that are suitable for the desired throughput. 

Batch and ETL Job Monitoring 

Many analytics applications include batch and ETL jobs to run complex calculations or 

aggregations, simulations, forecasting, or to train machine learning models on huge 

datasets in an offline scenario. These jobs can often take hours or even days. 

These jobs should ordinarily be orchestrated and scheduled in an automated fashion. In 

addition to relying on compute and storage utilization metrics for the batch and ETL 

jobs, you should also instrument your job orchestration and scheduling systems to 
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provide end to end metrics and alerts for jobs. Although this is not an exhaustive list, 

you should consider monitoring job execution time, job SLAs, and overall job compute 

utilization. 

CloudWatch Metrics and Alerts 

When using higher-level AWS analytics services, you should leverage the many built-in 

CloudWatch Metrics and create alerts. These alerts can be used both for notification 

purposes, as well as automating the scaling policies on your applications themselves. 

For big data applications running on Amazon EC2, you might need to instrument for 

additional monitoring metrics and logging. You can use CloudWatch Logs and Custom 

Metrics to transmit custom application metrics to Amazon CloudWatch. You can also 

engage with our APN Partners who can help you simplify and enhance your monitoring 

and logging for analytics application profiling. 

ANALYTICS_PERF 05: How are you monitoring the performance of your 
queries? 

Monitoring query and retrieval performance over time is important so that you can 

continuously re-evaluate whether you are using appropriate data stores, databases, and 

file formats for your use cases. Most analytics applications ultimately persist ingested 

data and processed results in a durable location for querying or retrieval, such as 

queries from applications, ad hoc SQL queries on a data lake, machine learning training 

jobs, business intelligence queries from a data warehouse, and more.  

You should monitor query performance of services such as Amazon Redshift, Athena, 

Amazon EMR, DynamoDB, in order to make informed decisions on performance 

optimization. This will vary depending on the AWS features and services you are using 

and the overall architecture. 

Tradeoffs 

See the Well-Architected Framework whitepaper for best practices in the tradeoff area 

for performance efficiency that apply to analytics applications. 

Resources 

Refer to the following resources to learn more about our best practices for performance 

efficiency. 
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Documentation & Blogs 

• AWS Glue - Running and Monitoring AWS Glue 

• Amazon EMR – View and Monitor a Cluster 

• How Realtor.com Monitors Amazon Athena Usage with AWS CloudTrail and 

Amazon QuickSight 

• Top 10 Performance Tuning Tips for Amazon Athena 

• Monitoring the Amazon Kinesis Data Streams Service with Amazon CloudWatch 

• Unit Tests for Data 

 

 Whitepapers 

• Performance Efficiency Pillar 

Cost Optimization Pillar 

The cost optimization pillar includes the continual process of refinement and 

improvement of a system over its entire lifecycle. From the initial design of your very 

first proof of concept to the ongoing operation of production workloads, adopting the 

practices in this document can enable you to build and operate cost-aware systems that 

achieve business outcomes and minimize costs, thus allowing your business to 

maximize its return on investment. 

Definition 

There are four best practice areas for cost optimization in the cloud: 

• Cost-effective resources 

• Matching supply and demand 

• Expenditure awareness 

• Optimizing over time 

As with the other pillars, there are trade-offs to consider. For example, do you want to 

optimize for speed to market or for cost? In some cases, it’s best to optimize for 

speed—going to market quickly, shipping new features, or simply meeting a deadline—

rather than investing in upfront cost optimization. Design decisions are sometimes 

guided by haste as opposed to empirical data, as the temptation always exists to 

https://docs.aws.amazon.com/glue/latest/dg/monitor-glue.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-glue.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-manage-view.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-manage-view.html
https://aws.amazon.com/blogs/big-data/analyzing-amazon-athena-usage-by-teams-within-a-real-estate-company/
https://aws.amazon.com/blogs/big-data/analyzing-amazon-athena-usage-by-teams-within-a-real-estate-company/
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://docs.aws.amazon.com/streams/latest/dev/monitoring-with-cloudwatch.html
https://github.com/awslabs/deequ
https://d1.awsstatic.com/whitepapers/architecture/AWS-Performance-Efficiency-Pillar.pdf
https://d1.awsstatic.com/whitepapers/architecture/AWS-Performance-Efficiency-Pillar.pdf
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overcompensate “just in case” rather than spend time benchmarking for the most cost-

optimal deployment. This often leads to drastically over-provisioned and under-

optimized deployments. The following sections provide techniques and strategic 

guidance for the initial and ongoing cost optimization of your deployment. 

Analytics workloads primarily differ from traditional workloads in their scale, both in the 

storage of data and the computational requirements. The business drivers that derive 

value from analytics often have time-sensitive response requirements that can push 

architectures toward over-provisioning. However, considering the following questions 

can result in a cost-optimized analytics platform. 

Design Principles 

In the cloud, the cost optimization design principles from the AWS Well-Architected 

Framework whitepaper are recommended and do not vary for analytics workloads. 

Best Practices 

Cost-Effective Resources 

ANALYTICS_COST 01: How are you choosing the right compute solution 
for analytics applications? 

During the initial planning and testing phases of analytics workloads, using on-demand 

resources provides immense flexibility to iterate through many alternative architectures 

until all aspects of a well-architected analytics project are optimized, such as selecting 

the right tool for the job to meet the required time-duration of analytics pipeline runs. 

On-demand resource billing allows low-commitment testing across multiple scenarios 

and scales. At the end of the testing period, a project should have an understood set of 

resource requirements: the number, type, and size of resources, as well as the steady-

state or spikiness of the workload. 

Reserved Instance commitments provide significant cost savings for those resources 

that have steady utilizations. Reserved Instances can be purchased for DynamoDB, 

RDS, Amazon Redshift, Amazon EMR, and ElastiCache. 

For transient workloads, or those that implement stateless logic, consider using Amazon 

EC2 Spot Instances for additional cost savings. You can tightly integrate Spot Instances 

with other AWS services, such as Amazon EMR, Amazon EC2 Auto Scaling, AWS Auto 

Scaling, CloudFormation, AWS Batch, Data Pipeline, and Amazon Elastic Container 
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Service (Amazon ECS). You also can integrate with non-AWS services, including 

Jenkins, Bamboo, Alces Flight, and Terraform. Spot Instances are an excellent option 

for reducing costs for development or quality assurance (Dev/QA) applications. 

On Amazon EMR, instance fleets give you a wider variety of options and automated 

intelligence for instance provisioning. For example, you can now provide a list of up to 

five instance types with corresponding weighted capacities. Amazon EMR automatically 

provisions On-Demand and Spot Instance capacity across these instance types when 

creating your cluster. This can make it easier and more cost effective to quickly obtain 

and maintain your desired capacity for your clusters. 

ANALYTICS_COST 02: How are you optimizing data stored in your data 
lake for cost? 

It’s very common for data assets to grow exponentially year over year in a data lake. 

With this exponential growth, it’s important for you to optimize your data lake for cost. 

Amazon S3 offers a variety of storage classes that enable you to optimize costs over 

time. You could consider a lifecycle plan that migrates data from S3 Standard to S3-

Infrequent Access (or in some cases S3-Infrequent Access Single-AZ) to Amazon S3 

Glacier class to be a sufficient cost-savings measure. Newer services that allow directly 

querying data in Amazon S3, such as Redshift Spectrum, Athena, Amazon S3 Select, 

and S3 Glacier Select, allow you to change how data should be stored for analytics. In 

many cases, adding a hive-style partitioning structure to the Amazon S3 prefix naming 

convention, compressing your data, and storing data in columnar formats can improve 

query speed as well as reduce the cost of query transactions. 

Amazon Athena is a serverless query service that makes it easy to analyze data directly 

in Amazon S3 using standard SQL. With Amazon Athena, you only pay for the queries 

that you run. You are charged based on the amount of data scanned per query. You 

can achieve significant cost savings and performance gains by compressing, 

partitioning, or converting your data to a columnar format, because each of those 

operations reduces the amount of data that Athena needs to scan to execute a query. 

Amazon Athena supports a wide variety of data formats, such as CSV, TSV, JSON, and 

text files, and also supports open source columnar formats, such as Apache ORC and 

Apache Parquet. Athena also supports compressed data in Snappy, Zlib, LZO, and 

GZIP formats. By compressing, partitioning, and using columnar formats, you can 

improve performance and reduce your costs. 

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-instance-fleet.html


Amazon Web Services Analytics Lens 

 65 

S3 Select and S3 Glacier Select enable applications to retrieve only a subset of data 

from an object by using simple SQL expressions. You can use Amazon S3 Select to 

query objects in Apache Parquet format, JSON Arrays, and GZIP or BZIP2 compression 

for CSV and JSON objects. GZIP and BZIP2 are the only compression formats that 

Amazon S3 Select supports. 

Amazon Redshift also includes Redshift Spectrum, allowing you to directly run SQL 

queries against exabytes of unstructured data in Amazon S3. Amazon Redshift 

Spectrum charges you by the amount of data that is scanned from Amazon S3 per 

query. Parquet stores data in a columnar format, so Amazon Redshift Spectrum can 

eliminate unneeded columns during the scan. Various tests have shown that partitioned 

Parquet files are not only performing faster, but they are also much more cost-effective 

than non-partitioned row-based CSV files. Redshift Spectrum supports multiple 

structured and semistructured data formats. Refer to the Redshift Spectrum 

documentation for all supported formats. 

For MapReduce workloads, consider storing data in Amazon S3 and using the Amazon 

EMR File System (EMRFS). EMRFS is an implementation of HDFS that all Amazon 

EMR clusters use for reading and writing regular files from Amazon EMR directly to 

Amazon S3. EMRFS provides the convenience of storing persistent data in Amazon S3 

for use with Hadoop while also providing features like consistent view and data 

encryption. With EMRFS, it is much easier to launch transient Amazon EMR clusters, 

saving money by only paying for the time the cluster is used. 

ANALYTICS_COST 03: How are you tiering your storage for cost 
effectiveness? 

Tiered storage transitions datasets to different storage tiers based on the usage 

patterns to optimize storage cost. For example, “hot data” (frequently accessed data) is 

generally kept in in-memory stores (caches), “warm data” (less frequently accessed 

data) in object stores, databases and “cold data” in magnetics drives or tapes for 

archival. It is highly recommended that you consider tiering your storage for your 

analytics workload.  

AWS provides multiple options to choose from when selecting a storage layer for your 

analytical applications. Selecting the correct storage layer is the foundation for your 

analytical infrastructure and you should use the right service to achieve the desired 

scale. For details on AWS storage offerings, refer to this link.  

https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/spectrum/
http://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-data-files.html
http://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-data-files.html
https://d1.awsstatic.com/whitepapers/Storage/AWS%20Storage%20Services%20Whitepaper-v9.pdf
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The chart below shows how data can be tiered and moved between the different AWS 

storage services. 

 

Figure 9: Tiered Storage on AWS 

The left column represents the common data formats that you would build analytical 

applications on. The right side lays out the different AWS services. The services on the 

right are for low latency frequently accessed data and the services on the left are for 

high latency rarely accessed datasets. The arrows denote how you can move from data 

from one service to the other. 
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• Structured Data and Databases: This layer represents datasets that exist in 

structured formats like CSV, Parquet and ORC or datasets that are stored in 

OLAP or OLTP databases. These are ideal for fast query performance and are 

the desired format for low latency applications. As noted in the above chart, 

structured data residing on S3 can be used seamlessly with Redshift Spectrum to 

create external tables. The data in the external tables can be merged with 

Amazon Redshift physical layer tables via SQL statements. Other services we 

have in this layer include ElastiCache that allows in memory processing of 

datasets for faster response times, Elasticsearch that allows you to build search 

capabilities on datasets, RDS for storing data in OLTP format and Amazon 

DynamoDB for storing data queried using NoSQL techniques. You can choose 

from these services to store data that is frequently accessed and requires low 

latency retrievals. 

• Objects: Amazon S3 is the object storage service from AWS that’s high on 

durability. It interfaces with other AWS compute services like EC2, EMR, 

Lambda, DynamoDB and Amazon Redshift to allow for scalable compute 

architectures. S3 provides different options for storage tiers that you can choose 

from. S3 Standard is used for objects that are frequently accessed and S3 

Infrequent Access (S3 IA), which has a lower storage cost, are for objects that 

are less frequently accessed. S3 IA does have a retrieval fee associated to it so 

objects should be moved to this layer only when it’s not accessed frequently. 

Objects that are almost never accessed can be archived to Glacier, which is the 

archival service from AWS. 

• Files: For customer looking for hosting shared file systems on AWS, Amazon 

Elastic File System (EFS) is a great option. EFS provides a POSIX interface and 

an NFS mount point for the files system that can be mounted on multiple 

instances in parallel. It’s great for scaling big data workloads horizontally as the 

same file can now be processed in parallel using multiple compute instances. 

Moreover, EFS storage grows with customer’s usage so they do not need to pre-

provision volumes which may result in over or under provisioning of file storage. 

For certain analytics workloads, Amazon FSx for Lustre provides a high-

performance file system that works natively with Amazon S3.  

https://aws.amazon.com/fsx/lustre/
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• Block Volumes: Amazon EBS allows customer to attach a block storage to EC2 

compute instances. These block volumes can exist beyond the lifecycle of the 

instance as EBS snapshots. The snapshots are saved on S3 and can be 

mounted on any EC2 instance for computing on the files stored in the volume. 

You can use Amazon Data Lifecycle Manager (Amazon DLM) to automate the 

creation, retention, and deletion of snapshots taken to back up your Amazon 

EBS volumes. 

Transitioning between layers is achieved using lifecycle policies. You author lifecycle 

policies which are used to move objects automatically between these different layers. 

Lifecycle policies can be built using S3 storage management features that provide 

insights into how often a certain object has been accessed over a period of time. S3 

also provides the S3 Intelligent-Tiering storage class. This storage class automatically 

transitions objects into two access tiers: frequent access and infrequent access, based 

on the access pattern on the object. This tiering happens automatically without you 

taking additional action. Any object that hasn’t been accessed for 30 consecutive days 

is moved to infrequent access tier and when it's accessed again, it is moved back to 

frequent access tier. 

For objects that need to be distributed across the globe and/or require caching near the 

request source for even lower latencies, customer can use Amazon CloudFront which is 

a content delivery network (CDN) service from AWS. It is available at multiple AWS 

edge locations and can be used to cache objects from S3. 

When you are building a data lake on AWS, it’s important to look at the various AWS 

storage options highlighted above and choose the right service for the datasets. 
Matching Supply and Demand 

ANALYTICS_COST 04: What is your data lifecycle plan? 

When designing a data lake or data analytics project, considerations such as required 

access patterns, transaction concurrency, as well as acceptable transaction latency will 

influence where data is stored. It is equally important to consider how often older data 

will be accessed, and to have a data lifecycle plan to migrate data tiers from hotter 

storage to colder, less-expensive storage, while still meeting all business objectives. 

For example, when analyzing log data, perhaps the previous 90 days must stay 

accessible for query in S3 Standard class, whereas data between 91-365 days old can 

be migrated to S3 Infrequently Accessed class, and data older than 365 days can be 

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/snapshot-lifecycle.html
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migrated to S3 Glacier class. Determining when and how frequently data is accessed 

will indicate when data can be migrated between storage tiers, and can be codified into 

a data lifecycle plan. 

Several AWS capabilities help you evaluate your current data storage needs as well as 

plan for implementing a data lifecycle plan. S3 Inventory and S3 Analytics allow 

identifying objects stored in S3 as well as analyze storage access patterns to help you 

decide when to transition the right data to the right storage class. For example, with S3 

Analytics you can answer the following questions: How much of my storage did I 

retrieve? What percentage of my storage did I retrieve? How much of my storage is 

infrequently accessed? How old are the objects in my storage? 

Additionally, for data warehouse workloads, infrequently accessed data in the 

warehouse can be migrated from local storage to S3. When the cold data is required for 

analytics, use services such as Athena or Redshift Spectrum to join data in relational or 

warehouse storage with directly-queried data located in S3. In this manner, the amount 

of storage provisioned in the database or data warehouse can be significantly less than 

would be necessary to store all the data locally.  

ANALYTICS_COST 05: How are you calculating your individual data-
processing step costs? 

It is important to consider analytics workflow costs at each individual data processing 

step or individual pipeline branch. The benefit of understanding analytics workflow costs 

at this granular level will help determine where to focus engineering resources for 

development, as well as perform return-on-investment calculations for the analytics 

portfolio as a whole. For example, if a high-cost ETL job is run hourly, but the 

downstream analytics is performed nightly, determining the effective cost of the pipeline 

steps would provide justification to reduce the frequency of the ETL job. 

In this context, “data processing step” is defined as an event which results in a response 

dataset, such as a SQL query, a MapReduce function, a data munge, an ML model 

inference, or even an import/export job. AWS provides many options for your analytics 

applications, so considering performance without considering cost may leave you over-

provisioned for your business requirement.  

Factors that will impact data processing costs include: data storage location, data 

processing frequency, ETL or job concurrency, data size per processing cycle, 

processing duration and/or allowed latency, data format, network traffic costs, as well as 

upstream and downstream processes. 
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A best practice when considering cost-optimizing a big data workflow is to create a data 

pipeline model. For each step calculate the cost of that step considering the above 

factors. For example, storing data in S3 Standard Infrequently Accessed class (S3-IA) 

costs less than storing data in S3 Standard while the data is at rest. However, when 

considering the transaction costs of repeatedly retrieving data from S3-IA, the combined 

cost of storage + retrieval will point to S3 Standard as the lower-cost option. Similar 

calculations can be performed for storing and transacting on data in Amazon Redshift 

vs. Redshift Spectrum, Athena vs RDS, etc. Each AWS service has been designed to 

serve a particular need and the cost of that service can guide a user to the optimum 

solution. 

AWS detailed billing reports as well as third-party solutions from APN Partners can 

provide fine-grained cost breakdowns by resource to assist in calculating individual data 

processing step costs. 

Expenditure Awareness 

ANALYTICS_COST 06: How are you tracking the “freshness” of your data 
used by your analytics application? 

In conjunction with having a data lifecycle plan, it’s important to track data “freshness.” 

In many cases, maintaining a metadata repository for tracking data movement will be 

worthwhile, not only to instill confidence in the quality of the data, but also to identify 

infrequently updated data. Infrequently updated data can often move from relatively 

more expensive low-latency storage to relatively less expensive high-latency storage. 

Consider using an automated system to move data between tiers. 

For example, consider a business that updates sales reports on a daily, a monthly, and 

an annual cadence. After transactions are aggregated for the daily report, the data can 

be migrated from an RDBMS to Amazon S3 where the data can be ingested in a batch-

processing system such as Amazon EMR or am AWS Glue Job. 

Herd is one open-sourced metadata catalog tool created by the Financial Industry 

Regulatory Authority (FINRA). In addition, there are commercial vendors who provide 

metadata management and governance solutions. 

ANALYTICS_COST 07: How are you managing data transfer costs in your 
analytics application? 
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In AWS, data transfer charges apply to data transferred out of AWS to the internet or 

over Direct Connect, data transferred between Regions, and data transferred between 

Availability Zones. Data transfer into AWS and data transfer within an AZ is free.  

It’s a best practice to scale applications horizontally (by adding additional hosts) rather 

than vertically (by increasing host memory or CPU) to reduce the risk of a lost host 

taking down the application. Similarly, another best practice is to place horizontally-

scaled hosts in multiple Availability Zones to reduce the risk of a single AZ outage 

taking down the application. Applications that are “chatty,” or have significant network 

traffic between hosts, should be monitored to provide visibility of the network traffic 

costs and, if necessary, to justify re-architecting the application to reduce network traffic 

while still maintaining required availability and resiliency goals. For transient workloads, 

it might be more cost effective to scale horizontally within a single AZ and rerun if 

needed. 

Special consideration should be given to applications where data is hosted in only one 

Region or in an on-premise data store but consumed in AWS. In many cases, it’s cost 

effective to move data closer to the analytics tools in the cloud rather than to pay data 

transfer charges. Another option for applications repeatedly reading the same data 

fields is to place a data cache service between the application and the on-premises data 

store, such as Amazon ElastiCache. 

VPC Flow Logs are one tool for monitoring data traffic in your AWS environment. VPC 

Flow Logs is a feature that enables you to capture information about the IP traffic going 

to and from a VPC, a subnet, or a specific network interface. Flow log data for a 

monitored network interface is recorded as flow log records, which are log events 

consisting of fields that describe the traffic flow source, destination, and bytes of traffic, 

among other fields. Periodically collecting and analyzing VPC Flow Logs can provide 

significant insight into characterizing analytics application network transit costs 

(especially in a multitenant environment). It’s not recommended to continuously collect 

and store VPC Flow Logs records for already characterized applications, due to the 

volume of records and the cost of storage for these low-utility records outside of periodic 

characterization. 

ANALYTICS_COST 08: What is your cost allocation strategy for resources 
consumed by your analytics application? 

It’s important to provide users and financial stakeholders visibility into costs for your 

analytics workload. This is especially true for high-business-value analytics workloads 

that may require significant computation to achieve results within short windows. The 
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cost-allocation strategy you choose can differ when using a siloed or shared-tenancy 

architecture. 

In the siloed approach to analytics, individual teams or business units retain the use of 

AWS resources for their line-of-business purposes. Cost allocation can be performed in 

several ways with the two primary methods being cost-allocation tagging, and multi-

zccount strategy. In cost-allocation tagging, AWS resources are tagged with one or 

more metadata key-value pairs, where the key designates the cost metric and the value 

designates the line of business or bill-back group. For example, a key-value pair could 

associate one key “Cost Center” to the value “BI Tools” and another key “Deployment 

Stage” to the value “Test.” Using multiple key-value pairs allows fine-grained cost 

reporting. Another approach to use with siloed analytics workloads is a multi-account 

strategy for higher levels of separation of security and billing. 

AWS Organizations is a service that allows a nested hierarchy of groups of AWS 

accounts, where all account billing is consolidated under the top-most level master-

payer account. All billable activity within each account is exposed as a separate line 

item on the monthly bill. Comparing the two methods for billing purposes, the multi-

account strategy allows more simplicity of billing separation without enforcing tags on all 

resources, but with the added complexity of managing users and resources that may be 

redundant among multiple accounts. 

In the shared-tenancy approach to analytics, an analytics platform is deployed in a 

manner that enables multiple lines of business to use it. Similarly, a shared-tenancy 

platform is often used to provide SaaS analytics to your customers. Cost-allocation in a 

shared-tenancy model requires using a combination of logging and cost modeling to 

determine the correct price per transaction or workload. Recommended metrics to 

capture in addition to the entity requesting the work include runtime duration, read/write 

capacity units, and data scanned. AWS CloudTrail and CloudWatch Logs enable the 

capture of API calls and event logs, respectively, such that a cost-allocation model can 

be utilized to provide a per-session charge-back.  

Optimizing Over Time 

See the Well-Architected Framework whitepaper for best practices in the optimizing 

over time area for cost optimization that apply to analytics applications. 

Resources 

Refer to the following resources to learn more about our best practices for operational 

excellence. 
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Documentation & Blogs 

• Managing Your Cost Savings with Amazon Reserved Instances 

• How Goodreads offloads Amazon DynamoDB tables to Amazon S3 and queries 

them using Amazon Athena 

• Best practices for resizing and automatic scaling in Amazon EMR 

• Work with partitioned data in AWS Glue 

• Using Amazon Redshift Spectrum, Amazon Athena, and AWS Glue with Node.js 

in Production 

• Documentation: Using Cost Allocation Tags 

Whitepapers 

• Cost Optimization Pillar of the AWS Well-Architected Framework 

• Laying the Foundation: Setting Up Your Environment for Cost Optimization 

• Amazon EC2 Reserved Instances and Other Reservation Models 

• Leveraging Amazon EC2 Spot Instances at Scale 

• Creating a Culture of Cost Transparency and Accountability 

• Right Sizing: Provisioning Instances to Match Workloads 

• AWS Storage Optimization 

Conclusion 

This lens provides architectural guidance for designing and building reliable, secure, 

efficient, and cost-effective analytics workloads in the cloud. We captured common 

architectures and overarching analytics design tenets. The document also discussed 

the well-architected pillars through the analytics lens providing you with a set of 

questions to consider for new or existing analytics architectures. Applying the 

framework to your architecture helps you build robust, stable, and efficient systems, 

leaving you to focus on running analytics pipelines and pushing the boundaries of the 

field to which you’re committed. The analytics landscape is continuing to evolve as the 

ecosystem of tooling and processes grows and matures. As this evolution occurs, we 

will continue to update this paper to help you ensure that your analytics applications are 

well-architected. 

https://aws.amazon.com/blogs/enterprise-strategy/managing-your-cost-savings-with-amazon-reserved-instances/
https://aws.amazon.com/blogs/big-data/how-goodreads-offloads-amazon-dynamodb-tables-to-amazon-s3-and-queries-them-using-amazon-athena/
https://aws.amazon.com/blogs/big-data/how-goodreads-offloads-amazon-dynamodb-tables-to-amazon-s3-and-queries-them-using-amazon-athena/
https://aws.amazon.com/blogs/big-data/best-practices-for-resizing-and-automatic-scaling-in-amazon-emr/
https://aws.amazon.com/blogs/big-data/work-with-partitioned-data-in-aws-glue/
https://aws.amazon.com/blogs/big-data/using-amazon-redshift-spectrum-amazon-athena-and-aws-glue-with-node-js-in-production/
https://aws.amazon.com/blogs/big-data/using-amazon-redshift-spectrum-amazon-athena-and-aws-glue-with-node-js-in-production/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://d1.awsstatic.com/whitepapers/architecture/AWS-Cost-Optimization-Pillar.pdf
https://d1.awsstatic.com/whitepapers/architecture/AWS-Cost-Optimization-Pillar.pdf
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-laying-the-foundation/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-reservation-models/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-leveraging-ec2-spot-instances/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-transparency-accountability/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-right-sizing/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/cost-optimization-storage-optimization/introduction.html
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